1. (10 pts.) a). Use Maxwell’s equations in vacuum and in the absence of charges and currents to show that the electric field \vec{E} and magnetic field \vec{B} satisfy individually wave equations of similar form.

(10 pts.) b) Assume that an electromagnetic wave with wave vector \vec{k} is described by equations $\vec{E}(r,t) = \vec{E}_0 \sin(\omega t - \vec{k} \cdot \vec{r})$ and $\vec{B}(r,t) = \vec{B}_0 \sin(\omega t - \vec{k} \cdot \vec{r})$, where ω is the wave’s angular frequency. Show that \vec{E}_0, \vec{B}_0 and \vec{k} form an orthogonal triad of vectors.

(10 pts.) c) Show that the magnitude of the wave are related by a proportionality constant.

NOTE: $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla}(\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$, for any vector \vec{A}.

2. Consider a long cylinder, surrounded by vacuum, of radius R with volume charge density $\rho = kr$, where r is the distance from its axis and k is a constant.

(15 pts.) a) Find the electric field vector inside and outside the cylinder.

(15 pts.) b) Find the electric potential inside and outside the cylinder.

3. Consider a long straight wire of length L that carries a steady current I.

(15 pts.) a) Find the magnetic vector potential at a perpendicular distance r from the midpoint of the wire.

(5 pts.) b) Find the magnetic field vector at distances $r < L$. Your answer from part (a) may be useful.

NOTE: $\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln(x + \sqrt{x^2 + a^2})$

4. A conducting sphere of radius R and conductivity Σ is at time $t = 0$ uniformly charged with volume charge density ρ_v. Find, as a function of time, the sphere’s:

(10 pts.) a) volume charge density

(10 pts.) b) surface charge density.