Thermodynamics

30 pts. 1) Assuming that the working gas is an ideal gas with temperature-independent heat capacities, find the efficiency η of the following cycle. Express the final answer for η in terms of γ (the heat capacity ratio) and V_2/V_3 only.

![Diagram of a thermodynamic cycle](image)

30 pts. 2) A mass m of water at temperature T_1 is isobarically and adiabatically mixed with an equal mass of water at temperature T_2. Assume a constant specific heat C_p. Calculate the final temperature of the total system and the entropy change of the total system.

40 pts. 3) A certain solid can exist in two phases at low temperatures. At normal pressure (1 atm), the chemical potentials μ_i ($i = 1, 2$) of the two phases have the form

$$\mu_i = a_i - b_i T^2 - c_i T^4,$$

where the coefficients $a_1 = 3.5 \text{ J/g}$, $a_2 = 0.5 \text{ J/g}$, $b_1 = 4 \text{ J/gK}^2$, $b_2 = 2 \text{ J/gK}^2$, $c_1 = 2 \text{ J/gK}^4$, and $c_2 = 1 \text{ J/gK}^4$.

(a) Find the temperature T_c of the phase transition. Indicate which phase is stable below T_c and which phase is stable above T_c. Why?

(b) Calculate the latent heat of this transition? Based on your result, is this transition first or second order? Why?

(c) Calculate the specific heat jump ΔC_p at T_c.
