Thermodynamics and Statistical Mechanics

Instructions: Solve all three problems.

1. (30 points) The molar specific heat at constant volume of a monatomic ideal gas is known to be $3R/2$. Suppose that one mole of such a gas undergoes a cyclic quasistatic process which appears as a circle in the $P-V$ plane shown below. (P_0 and V_0 are a reference pressure and volume, respectively).

 (a) Calculate the net work done by the gas in one cycle in terms of the product P_0V_0. Hint: Consider $P dV = P_0V_0 \frac{P}{P_0} d \left(\frac{V}{V_0} \right)$.

 (b) Calculate the internal energy change of the gas between state C and state A in terms of P_0V_0.

 (c) Calculate the heat absorbed by the gas in going from A to C via the path ABC of the cycle, in terms of P_0V_0.

2. (40 points) Consider a system of N localized particles with non-degenerate energy levels given by $\varepsilon_0 = 0$, $\varepsilon_1 = \Delta$.

 (a) Calculate the canonical partition function Z_C.

 (b) Calculate the average energy \overline{E} of the system in contact with a heat reservoir.
(c) Given \(\overline{E^2} - \overline{E}^2 = -\frac{\partial}{\partial \beta} \overline{E} \), calculate the fractional rms energy fluctuation,

\[
f = \left(\frac{\overline{E^2} - \overline{E}^2}{\overline{E}^2} \right)^{1/2},
\]

of the system in terms of \(N, \beta, \) and \(\Delta. \)

(d) Suppose \(\Delta = 10^{-16} \text{ erg} \) and there are \(10^{23} \) particles. Estimate the temperature range for which \(f \geq 1. \) (Recall \(k_B = 1.38 \times 10^{-16} \text{ erg/K.} \))

3. (30 points) Suppose the quantum state of a harmonic crystal consisting of \(N \) atoms is given by a list of \(3N \) quantum numbers \(\{n_1, n_2, \ldots, n_{3N}\} \), each of which is a non-negative integer \((n_i = 0,1,2,\ldots) \). The corresponding energy levels of the system are given by \(\varepsilon_i = (n_i + 1/2) \hbar \omega_i. \)

(a) Calculate the mean energy of the system at temperature \(T. \)

(b) Assume the oscillator frequencies do not depend on \(T \). Evaluate the energy in the limit \(T \to 0 \) and explain why it is non-zero.