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Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarel-

ativistic nuclear collisions. A related open issue is the extent to which hydrodynamic models and

calculations which approach the low density (dilute gas) limit can describe the data. Among the ef-

fects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations

that are unrelated to the reaction plane (non-flow correlations). This study presents data from the

STAR experiment at Brookhaven’s Relativistic Heavy Ion Collider (RHIC) and contrasts two- and

four-particle correlation results in order to estimate and eliminate these non-flow effects. It is found

that four-particle correlation analyses can reliably separate flow and non-flow correlation signals,

and the latter account for on average about 15% of the observed second-harmonic azimuthal corre-

lation, with the largest relative contribution for the most peripheral and the most central collisions.

The results are also corrected for the effect of flow variations within centrality bins. This effect is

negligible for all but the most central multiplicity bin, where the correction to the elliptic flow is

about a factor of two. A simple new method for two-particle flow analysis based on scalar products

is described.

This work presents an investigation of v2/ε — elliptic flow in various centrality bins, divided

by the initial spatial eccentricity for those centralities. Mapping centrality onto a scale of charged

particle density enables us to study a broad range of this quantity, from peripheral collisions at a few

GeV/nucleon, through CERN/SPS energies, and ending with central RHIC collisions. Within errors,

the STAR data follow a smooth trend and show no evidence of predicted phase transition signatures.



The pattern of v2/ε being roughly proportional to particle density continues over the density range

explored at RHIC, which is consistent with a general category of models which approximate the low

density limit as opposed to the hydrodynamic limit. On the other hand, v2/ε at STAR is consistent

with having just reached the hydrodynamic limit for the most central collisions. The present data

contain no hint of the expected saturation of v2/ε at the hydrodynamic limit.
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Chapter 1

Introduction

It is believed that a Quark-Gluon Plasma (QGP)[1], a deconfined state of quarks (see Ap-

pendix A) and gluons, existed on the order of micro seconds after the Big Bang, when the universe

was at a temperature of approximately 150 to 200 MeV (Fig.1.1). It is predicted that a hadron-quark

phase transition, which is the same transition as happened at the very beginning of the universe but

in the reverse direction, occurs in heavy-ion collisions at ultrarelativistic energies (Fig.1.2) .
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Figure 1.1: Phase diagram of nuclear matter.
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Figure 1.2: Space-time diagram of Heavy Ion Collision.

For the purpose of producing such an excited state of matter in the lab, the Relativistic Heavy-

Ion Collider (RHIC) at Brookhaven National Laboratory has been constructed and is presently tak-

ing data. What we expect to get from RHIC is a better understanding of fundamental particles as

well as the universe.

RHIC has been operating for physics experiments since June 2000. Reaction products are mea-

sured in a time projection chamber (TPC) in the STAR (Solenoidal Tracker At RHIC) detector,

which is one of two large detectors along the RHIC ring. The TPC in STAR has been designed to

focus primarily on hadronic observables and features a large acceptance for high precision tracking

and momentum analysis at center of mass (c.m.) rapidity (see Appendix B for definition and dis-

cussion of rapidity). RHIC provides significantly increased particle production over any previous

machine (thousands of particles produced).
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Figure 1.3: Reaction plane is defined by the initial direction of two colliding nuclei and the impact
parameter (b).

Anisotropic flow describes the azimuthal momentum distribution of particle emission with re-

spect to the reaction plane (defined by the beam direction and the impact parameter (b). see Fig. 1.3.)

when nuclei collide at other than zero impact parameter (non-central collisions) [2, 3]. The ini-

tial spatial deformation due to geometry and the pressure developed early in the collision causes

azimuthal momentum-space anisotropy. The measurement of flow can help provide insight into

the evolution of this early stage of a relativistic heavy-ion collision. Elliptic flow is characterized

by the second harmonic coefficient v2 of an azimuthal Fourier decomposition of the momentum

distribution [4, 5, 6], and has been observed and extensively studied in Au + Au collisions from

subrelativistic energies on up to RHIC. At incident energies above several GeV per nucleon, elliptic

flow is inferred to be a relative enhancement of emission in the plane of the reaction, and provides
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information about the early-time thermalization (local thermal equilibrium brought about by many

rescatterings per particle during the system evolution) achieved in the collisions [7].

Sideward and elliptic flow are widely studied phenomena with a well-understood relationship to

the event reaction plane [2, 3]. Generally speaking, large values of flow observables are considered

signatures of hydrodynamic behavior, while smaller flow signals can have alternative explanations.

Furthermore, there are several possible sources of azimuthal correlations which are unrelated to the

reaction plane. Examples include correlations caused by resonance decays or dijets, by HBT (see

section 2.3.) or Coulomb effects, by momentum conservation, etc. In the present type of study, it is

not necessary to distinguish between the various possible effects in this overall category, and their

combined effect is known as “non-flow” correlations.

Conventional flow analyses are equivalent to averaging over correlation observables constructed

from pairs of particles, and there is no requirement for each event to contribute more than one

pair. When such analyses are applied to relativistic nuclear collisions where particle multiplicities

can be as high as a few thousand, the possible new information contained in higher multiplets

remains untapped. A previous study of high-order flow effects focused on measuring the extent

to which all fragments contribute to the observed flow signal [8]. Given that flow analyses based

on pair correlations are sensitive to both flow and non-flow effects, the present work investigates

correlation observables constructed from particle quadruplets, and it is confirmed that non-flow

effects contribute at a negligible level to the quadruplet correlation.



Chapter 2

Probes for QGP

2.1 Direct photons and dileptons

Direct photons and dileptons are little affected by the later stages of the interaction, and they

may provide a measure of the thermal radiation from a QGP. The most prominent processes for the

creation of direct (thermal) photons in a QGP are qq̄ → γg (annihilation) and gq → γq (Comp-

ton scattering). The production rate and the momentum distribution of the photons depend on the

momentum distributions of quarks, anti-quarks and gluons in the plasma.

The rapidity distribution of direct hard photons reflects the initial rapidity distribution of the

produced mesons or directly the QGP[9]. If the hot thermal source is initially at rest and is ac-

celerated by two longitudinal rarefaction waves propagating inwards with the velocity of sound,

the photon rapidity distribution is strongly peaked around mid-rapidity. In contrast, a Bjorken-like

boost invariant expansion [10] results in a roughly flat photon rapidity spectrum.

Another important piece of information can be obtained by studying the pt distribution of direct

photons. Hydrodynamical calculations show that the temperature of the photon spectrum is reduced

in the event of a first order phase-transition to QGP[11, 12, 13].

Like direct photons, dileptons interact only electromagnetically so they can leave the hot and

dense reaction zone undistorted. Dileptons may be created via quark-antiquark annihilation, or by

a virtual photon. The parton cascade[14] and other models of an equilibration phase[15, 16] predict

an excess of dileptons originating from an equilibrating QGP over the Drell-Yan background[17] in

the mass range between 5 and 10 GeV. At lower invariant masses between 0.5 and 1 GeV, lepton

pairs from hadronic sources are expected to dominate and provide information of possible medium

modifications of hadrons at high density[18, 19]. The widths and positions of the ρ, ω and φ peaks

5
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in the lepton pair invariant mass spectrum are expected to be sensitive to medium-induced changes

of the hadronic mass spectrum. A change in the K-meson mass would also affect the width of the

φ meson[20, 21]. A double φ peak in the lepton pair spectrum would be indicative of a long-lived

mixed phase[22, 23].

In fact, if the thermal fireball lives significantly longer than the ∼ 1 fm/c lifetime of the ρ-

meson, then the strength of the ρ-meson in the lepton pair mass spectrum is expected to increase

relative to the long-lived ω. Thus, the ρ/ω ratio could serve as a “clock” for the lifetime of the

thermal fireball[24].

2.2 Charmonium suppression

The J/ψ has a very long lifetime and it decays into dileptons only when it is far from the

collision zone. That makes J/ψ a good probe of the very early stages of the collisions.

In a quark-gluon plasma, the color charge of a quark is subject to screening due to the presence

of quarks, anti-quarks, and gluons in the plasma. This phenomenon is called Debye screening, in

analogy to the familiar Debye screening of an electric charge in condensed matter physics. If a J/ψ

particle, which is a bound state of a charm quark c and a charm anti-quark c̄, is placed in the plasma,

the Debye screening will weaken the interaction between c and c̄. Furthermore, the string tension

between c and c̄ vanishes since quarks and gluons are deconfined. For the two combined reasons

above, the production of J/ψ particles in QGP is predicted to be suppressed[25]. Less tightly bound

excited states of the cc̄ system like ψ
′

and χc are expected to become “dissolved” more easily, and

thus their production will be suppressed even more than the J/ψ.

2.3 The Hanbury-Brown-Twiss effect

The probability of detecting two bosons at small relative momentum is affected by quantum

mechanical interference between their wave functions. The interference effect depends on the
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space-time extent of the boson-emitting source. This effect is commonly known as the Hanbury-

Brown-Twiss (HBT) effect, which was first used by Hanbury-Brown and Twiss to measure the

angular diameter of a star. The HBT measurements of particles emitted from the collision yields

the longitudinal and transverse radii as well as the lifetime of the emitting source at the moment of

thermal freeze out[26, 27, 28, 29, 30].

One can also study the correlation between non-identical particles. Such unlike-particle corre-

lations also provide information about the space-time structure of the particle source and can even

be used to determine the sequence of the emission of particles of different types[31].

A strong first order transition[29, 32] should result in a lower pressure, slower expansion and

a long-lived evaporating droplet of QGP. Thus the space-time information from the HBT measure-

ment is an important QGP signature.

2.4 Strangeness enhancement

In proton-proton collisions, the production of particles containing strange quarks is strongly

suppressed as compared to the production of particles with u and d quarks [33, 34], due to the

higher mass of the ss̄ quark pair. The suppression increases with the strangeness content of the

particles.

In the case of QGP, in which thermal equilibration and chemical equilibration is reached, ss̄

pairs can either be produced via the interactions of two gluons or qq̄ pairs. Leading order pQCD cal-

culations suggest that the second process dominates only for
√
s ≤ 0.6 GeV[35]. The calculations

also suggest that the time-scale of chemical equilibration of (anti-)strangeness due to gluon-gluon

interaction is estimated to be about 3 to 6 fm/c, depending on the temperature of the plasma.

From the argument above, the yield of strange and multi-strange mesons and (anti- )

baryons has been predicted to be strongly enhanced in the presence of a QGP as compared to a

purely hadronic scenario at the same temperature[36, 37]. It has been shown[38, 39, 40] that an

enhanced strangeness content cannot be destroyed nor generated by interactions during expansion
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and freeze-out. However, the estimated equilibration times may not be sufficiently rapid to cause a

saturation in the production of strange hadrons before QGP freeze-out.

2.5 Thermodynamic variables

In high energy collisions, a transverse kinetic energy distribution can be represented by a simple

exponential function : e−mT /T . Here T is the slope parameter, and mT is the transverse mass (see

Appendix B). Kinetic equilibration is thought to be visible predominantly in the transverse degrees

of freedom; therefore, transverse momentum or transverse mass distributions are used to extract

temperatures from the spectral slopes. The magnitude of the slope parameter provides information

on temperature (random motion in local rest frame) and collective transverse flow [41], and any

deviation from the exponential distribution may signal new physics such as medium effect [42], etc.

It has been suggested that abnormal nuclear matter, e.g. a QGP, may be observed via a sec-

ondary, high temperature component in the particle spectra, or via a shoulder in the pion multiplic-

ity distributions[43]. It has also been suggested that the equation of state (the energy density ε vs.

temperature T ) can be probed experimentally by plotting the mean transverse momentum 〈pt〉 vs.

the rapidity density dN/dy or the transverse energy density dN/dET . If a phase transition occurs

(i.e. a rapid change in the number of degrees of freedom), the saturation of 〈pt〉 during the mixed

phase would cause a monotonically rising curve interrupted by a plateau. However, hydrodynamical

studies[44, 45] show that the plateau could be washed out due to collective flow.

2.6 High pt probes

A fast charged particle in matter suffers energy loss either by excitation of the traversed medium

or by radiation. Similar mechanisms happen for a fast quark or gluon traveling through dense matter.

The connection between energy loss of a quark and the color-dielectric polarizability of the

medium can be established in analogy with the theory of electromagnetic energy loss[46, 47, 48].

Although radiation is a very efficient energy loss mechanism for relativistic particles, it is strongly



9

suppressed in a dense medium by the Landau-Pomeranchuk effect[49]. Adding the two contribu-

tions, the stopping power of a quark-gluon plasma is predicted to be higher than that of hadronic

matter, and the high pt spectra and elliptic flow is shown to be sensitive to initial gluon density [50].

2.7 Anisotropic flow

Anisotropic flow is the subject of many proposed signatures QGP formation. This dissertation

focuses on elliptic flow, and details of the possible connections between flow and QGP are presented

in later chapters.



Chapter 3

Hydrodynamics of QGP

3.1 Basic parameters in the hydrodynamical description of QGP

Assuming that nuclear matter behaves as a perfect fluid, its evolution is determined by the

equations of relativistic hydrodynamics until the mean free path of the particles is of the order of the

dimensions of the system. The complete dynamics of a hydrodynamical system can be described

by the energy density field ε, the pressure field p, the temperature field T , and the 4-velocity field

uµ = dxµ/dτ , where xµ is the 4-vector coordinates and τ is the proper time. The first three

quantities above are related by the equation of state ε = ε(p, T ).

3.2 The energy-momentum tensor T µν

When a fluid element is at rest, the energy momentum tensor describes the energy density and

the pressure. For example, T 00 = ε, T 11 = pressure in (2, 3) direction. In a frame in which

the fluid element is moving with a 4-velocity uµ, the energy-momentum tensor is carrying out the

transformation:

T µν = (ε+ p)uµuν − gµνp. (3.1)

3.3 The dynamics

From energy and momentum conservation, and neglecting viscosity and thermal conductivity,

we have

∂Tµν
∂xµ

= 0. (3.2)

10
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The equation 3.2 can be solved with certain simplifications assuming an equation of state (EOS).

For example, if we consider only the longitudinal coordinate (beam direction in head-on heavy ion

collisions) and the time coordinate, we can end up with (see Bjorken’s hydrodynamic model [10])

∂ε

∂τ
+

(ε+ p)

τ
= 0. (3.3)

In the case of an ideal gas of massless quarks and gluons, the energy density and the pressure

are related by p = ε/3, thus equation 3.3 becomes

dε

dτ
= −4

3

ε

τ
, (3.4)

which has the solution

ε(τ)

ε(τ0)
=
ε(τ)

ε0
= (

τ0
τ

)
4/3
, (3.5)

in which τ0 and ε0 are the proper time and energy density when the local equilibrium begins.

For the pressure we have

p(τ)

p(τ0)
= (

τ0
τ

)
4/3
. (3.6)

For an ideal relativistic gas, the energy density and the pressure are proportional to T 4, where

T now signifies temperature [51]. Then

T (τ)

T (τ0)
= (

τ0
τ

)
1/3
. (3.7)

Other thermodynamic quantities such as entropy, S, can be obtained by [51]
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dE = −pdV + TdS, (3.8)

thus the entropy density is

s ≡ dS

dV
=
ε+ p

T
. (3.9)

From Eq. 3.5, 3.6 and 3.7, it follows that

s(τ)

s(τ0)
=
τ0
τ
, (3.10)

which means s(τ)τ is constant as a function of proper time.

As the volume element dV is given by dx2
⊥τdy, the last argument implies that

dS

dx2
⊥dy

= constant as a function of proper time, (3.11)

and it follows that

d

dτ
(
dS

dy
) = 0. (3.12)

3.4 Summary

For a relativistic system in which local equilibrium is reached at τ0 with initial energy density

ε0 and initial temperature T (τ0) ∝ ε0
1/4, the energy density and the pressure decrease with proper

time as τ−4/3, while the temperature drops as τ−1/3. The hydrodynamic motion of the fluid is

characterized by a constant entropy per unit of rapidity.



Chapter 4

Introduction to Anisotropic Flow

4.1 Introduction

Anisotropic flow provides access to the equation of state of the hot and dense matter formed

in the reaction zone since it is likely influenced by the the compression in the initial stages of the

collision. It can help us understand processes such as thermalization, creation of the quark-gluon

plasma, phase transitions, etc., and thus it is one of the important measurements in high energy heavy

ion collisions and has attracted increased attention of both theoreticians and experimentalists[6].

Anisotropic flow is usually quantified by the Fourier coefficient of the particle distribution in

emission azimuthal angle, measured with respect to the reaction plane, which can be written as:

E
d3N

d3p
=

1

2π

d2N

ptdptdy
(1 +

∞
∑

n=1

2vn cosnφ), (4.1)

where the definition of pt and y can be found in Appendix B, φ denotes the angle between the parti-

cle and the (true) reaction plane (defined by the impact parameter and the beam axis) in momentum

space. The sine terms which in general appear in Fourier expansions vanish due to the reflection

symmetry with respect to the reaction plane. It follows that 〈cosnφ〉 gives vn:

〈cos nφ〉 =

∫ π
−π cosnφE d3N

d3p
dφ

∫ π
−π E

d3N
d3p

dφ

=

∫ π
−π cosnφ(1 +

∑∞
m=1 2vm cosmφ)dφ

∫ π
−π(1 +

∑∞
m=1 2vm cosmφ)dφ

=

∫ π
−π 2vn cos2 nφdφ

2π

= vn , (4.2)

13
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where the orthogonality relation between Fourier coefficients
∫ π
−π[cosnφ cosmφ]m6=ndφ = 0 has

been used.

Anisotropic flow corresponding to the first two harmonics plays a very important role and we use

special terms for them: directed flow and elliptic flow, respectively. The word “directed” (also called

sideward flow) comes from the fact that such flow looks like a sideward bounce of the fragments

away from each other in the plane of the reaction, and the word “elliptic” is due to the fact that the

azimuthal distribution with non-zero second harmonic represents an ellipse (see Fig. 4.1).

φ

T

T

T

T

P

P

P

P

Figure 4.1: Major types of azimuthal anisotropies, viewed in the transverse plane. The target is
denoted by T and the projectile by P. Top: Directed flow on the projectile side of midrapidity,
positive (left) and negative (right). On the target side of midrapidity, the left and right figures are
interchanged. Bottom: elliptic flow, in-plane or positive (left) and out-of-plane or negative (right).
The plot is from [58].

4.2 Directed flow (Sideward flow)

Directed flow most strongly affects particles at forward and backward rapidities. At low en-

ergies (below 100AMeV), the interaction is dominated by the attractive nuclear mean field, which

has two effects: first, projectile nucleons are deflected towards the target, resulting in negative di-

rected flow [52]; second, the projectile and target form a rotating system, and the centrifugal force
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emits particles in the rotation plane[53], producing in-plane elliptic flow[54, 55]. At higher en-

ergies, individual nucleon-nucleon collisions dominate over mean field effects. They produce a

positive pressure, which deflects the projectile and target fragments away from each other in the

center of mass frame (“bounce-off” and “sidesplash” effects [2]), resulting in positive directed flow.

Furthermore, the participant nucleons, which are compressed in the region where the target and

the projectile overlap (see Fig. 4.1), cannot escape in the reaction plane due to the presence of the

spectator nucleons (“squeeze-out effect” [56]), producing out-of-plane negative elliptic flow.

At RHIC energies, the observed directed transverse flow pattern is established very early in the

collision, since the affected particles quickly leave the central region where the transverse pressure

acts. Its natural time scale is given by the passage time of the two colliding nuclei, which decreases

at high collision energies; this causes a decrease at high collision energies (after an initial rise at low

beam energies) of the directed flow (Fig. 4.2 ).

This decrease is amplified by a lack of thermalization during the earliest stage of the collision which

prohibits fast enough buildup of transverse pressure and thus eventually invalidates the applicability

of hydrodynamic concepts for calculating the directed flow. Such pre-equilibrium features may even

cover up the phase transition signal in the excitation function of directed flow. It has been argued

that the increased entropy density at the onset of QGP production should lead to a “softest point” in

the nuclear equation of state [57]. In Ref[59], this softening was predicted to lead to a reduction of

the directed flow, making the phase transition visible as a minimum in its beam energy dependence.

A different manifestation of softening due to possible QGP formation was discussed by Csernai and

Rohrich [60] (see Fig. 4.3).

The first evidence of directed flow at SPS was reported by the WA98 collaboration[61]. Further

measurements were made by NA49[62] and CERES[63]. The strength of directed flow at SPS is

is significantly smaller than at AGS (Fig. 4.4), especially in the region not close to projectile and

target rapidities.
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Figure 4.2: Schematic behavior of the magnitudes of directed flow (top) and elliptic flow (bottom)
as a function of the bombarding kinetic energy per nucleon in the laboratory frame. Full lines:
proton flow; dashed lines: pion flow. The plot is from [58].



17

Figure 4.3: Upper part: Definition of the measure softening, S, describing the deviation of Px(y)
or v1(y) from the straight line behavior, ay, around midrapidity. S is defined as |ay − Px(y)|/|ay|.
The lower figure shows a typical example for fluid dynamical calculations with Hadronic and QGP
EOS. QGP leads to strong softening, ∼ 100%. The plot is from [60]
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Figure 4.4: Results of transverse flow analyses, Px vs. y/ycm at 158A GeV results show strong
softening. The plot is from [60]
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Weak negative directed flow from pions has been observed in asymmetric collisions[64, 65, 66].

This is interpreted as a consequence of pion rescattering on spectator matter[67]. The same effect

has been observed at AGS[68] and SPS[62].

4.3 Elliptic flow

4.3.1 Introduction

Elliptic flow is caused by the initial geometric deformation of the reaction region in the trans-

verse plane. At ultra-relativistic energies, the elliptic flow tends to act against its own cause by pref-

erentially enhancing momenta along the direction of the smallest spatial extent of the source [69,

70]. Unlike directed flow, elliptic flow needs time for thermalization, thus it is generated later than

directed flow.

Generally speaking, large values of collective flow are considered signatures of hydrodynamic

behavior, while smaller flow signals can have alternative explanations.

4.3.2 Centrality dependence of elliptic flow

The centrality dependence of elliptic flow is of special interest[71, 72]. In the low density

limit(LDL), the mean free path is comparable to or larger than the system size, and the colliding

nuclei resemble dilute gases. The final anisotropy in momentum space depends not only on the ini-

tial spatial eccentricity ε (defined below), but also depends on the particle density, which affects the

number of rescatterings. A more dilute system (less rescatterings) has more difficulty to transform

spatial anisotropy to momentum anisotropy.

Thus in this limit, the final elliptic flow (see a more detailed formula in [74]) is

v2 ∝ ε
1

S

dN

dy
, (4.3)

where dN/dy characterizes density in the longitudinal direction and S = πRxRy is the initial

tranverse area of the overlapping zone, with R2
x ≡ 〈x2〉 and R2

y ≡ 〈y2〉 describing the initial
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geometrical dimentions of the system in the x and y directions, respectively. (The x− z axes lie in

the reaction plane). The averages include a weighting with the number of collisions along the beam

axis in a wounded nucleon [73] calculation. The spatial eccentricity is defined as

ε =
R2
y −R2

x

R2
x +R2

y

, (4.4)

and is roughly proportional to the impact parameter over a wide range.

As follows from Eq. 4.3, the elliptic flow increases with the particle density. Eventually, it

saturates [58] at the hydro limit. In this region, the ratio of v2 to ε is expected to be approximately

constant [4] due to the complete thermalization (the mean free path is much less than the geometrical

size of the system).

The value of (v2/ε)hydro ranges from 0.27 − 0.35 according to Ollitrault’s calculation [4], de-

pending on the equation of state used (with or without QGP). More recent calculations by a different

group [69, 75], by taking account of the effect of resonances, which tend to decrease the flow, give a

smaller (v2/ε)hydro centered on 0.195 in the case of energy densities of the order of those expected

at RHIC.

Fig. 4.5[71] shows that the position of the maximum in v2(b) shifts towards peripheral events

as thermalization increases, i.e., moving from an LDL calculation to a hydrodynamic calculation.

4.3.3 Energy dependence

At AGS energies, the elliptic flow results from a competition between the early squeeze-out

when compressed matter tries to move out in the unimpeded direction perpendicular to the reaction

plane and the late-stage in-plane emission associated with the shape of the participant zone. The

squeeze-out contribution to the elliptic flow depends, generally, on the pressure built-up early on,

compared to the energy density, and on the passage time for the spectators. When the heated matter

is exposed to the vacuum in the transverse direction, expansion happens more rapidly in the exposed
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Figure 4.5: Top: comparison of elliptic flow, v2 as a function of impact parameter, for pions from
RQMD version 2.3 (filled circles) with the dependence expected for the low-density limit (solid line)
and that expected for the hydro limit (dashed line). Bottom: ratios of v2/v

LDL
2 , and v2/v
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2 .

The plot is from [71].
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direction.

At relativistic energies, the Lorentz contracted spectators in the colliding nuclei pass by each

other quickly (in a time of the order 2R/γ, where R is the nuclear radius and γ is the Lorentz

contraction factor). When this passage time is short enough, the in-plane (positive) component of

elliptic flow dominates.

Figure 4.6: Elliptic flow as a function of beam energy per nucleon. The plot is from [76]

The measured v2 as a function of beam energy per nucleon is displayed in Fig. 4.6. Whether or

not any changes in v2 with energy might be associated with a phase transition requires comparisons

to model calculations to assess the magnitude of such possible changes.

4.3.4 Elliptic flow from different particle species

Fig. 4.7 shows the differential momentum anisotropy v2(pt) for different hadron species in a

thermal model incorporating a phase transition to QGP[75]. At a given value of pt, the elliptic
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Figure 4.7: pt-differential elliptic flow at midrapidity for various hadrons from minimum bias
Au+Au collisions at

√
s = 130AGeV for a thermal model with a QGP phase transition[77].
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flow is seen to decrease with increasing particle mass. The pattern of the pt differential elliptic flow

decreasing with increasing particle mass comes from the energy conservation and radial flow, which

shifts the pt-distributions to lager value of pt. If, as in the case of elliptic flow, the radial velocity

is larger in x than in the y direction, |vx| > |vy|, if the energy distribution has to be isotropic, then

having higher pt in the x direction is compensated by having less particles going in the x direction,

resulting in a decreased v2 for heavy particles, which have bigger pt.



Chapter 5

STAR Experiment

5.1 The layout of the STAR experiment

The side-view of the STAR experiment is shown in Figure 5.1. The year-one configuration of

the STAR experiment consist of a cylindrical Time Projection Chamber (TPC) 4m in diameter and

4m long covering |η| < 1.8 and a Ring Imaging C̃erenkov (RICH) detector covering |η| < 0.3 and

|∆φ| < 20◦. The Central Trigger Barrel (CTB) and the Zero Degree Calorimeters (ZDC) together

serve the purpose of triggering. The RICH and the ZDC are not shown in Figure 5.1, as the ZDC is

far from the detector center and the RICH is under the TPC and obstructed from view in the figure.

All components other than the ZDC were located in a 0.5 Tesla solenoidal magnetic field during

year-one data taking.

5.2 STAR TPC

The TPC is a continuous tracking detector capable of handling events with thousands of tracks [78].

It determines the momenta of individual particles by tracing them through a solenoidal magnetic

field and identifies many of them by making multiple energy loss measurements.

The major mechanical components of the TPC (Fig. 5.2) consist of the outer field cage (OFC),

the inner field cage (IFC), the high voltage central membrane (CM) and some other support de-

vices. Both end-caps have instrumented pad planes, with thin-gap, multi-wire proportional cham-

bers (MWPC) in which the primary signal electrons are amplified by avalanche multiplication at

the anode wires. Image charges are induced on an array of pads located behind the anode wires and

are recorded as a function of time. For each track segment, the drift time provides one coordinate,

while the induced signals on the pad arrays provide the coordinates in the plane of the MWPC.

25
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Magnet IonEnd Cap Calorimeter
Forward Time Projection Chamber (FTPC) West

Vertex Position Detector (VPD) West

Time of Flight

Figure 5.1: The layout of the STAR experiment.
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Figure 5.2: Perspective view of the STAR Time Projection Chamber.
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The CM is located in the middle of the TPC and is held at high voltage (∼ 31 kV for the year

2000). The OFC and the IFC define the active gas volume (see below), while their major function

is to provide a nearly uniform electric field along the axis of the cylinder in which electrons drift to

the anode plane, since any distortion in the field will result in a distortion of the recorded tracks.

The TPC is filled with a mixture of 90% Argon and 10% Methane gas. When a charged particle

traverses the TPC volume, it ionizes gas atoms every few tenths of a millimeter along its path and

leaves behind a trail of electrons. The ionization energy is supplied by the kinetic energy of the

charged particle and is very small, typically a few keV per cm of gas under normal conditions. The

electron clusters then drift to the end-caps under the influence of the externally applied electric field.

The time of arrival and location of each electron cluster is recorded.

The end-cap at both ends of the TPC has anode wires and pad planes that are organized into

sectors. There are 12 sectors on each of the two endcaps (see Fig. 5.3), each sector consists of an

inner sector and an outer sector. The inner sector has 1, 750 pads, with dimension of 11.5 mm

along the radial direction and and 2.85 mm along the tangential direction, while the outer sector has

3, 940 pads with dimension of 19.5 mm (radial) x 6.2 mm (tangential). The inner sector pads are

smaller in order to improve two-track resolution. However, there would be no advantage in making

these pads even smaller, because of the diffusion limit of the TPC. Combining the inner and outer

sectors, there are a total of 5, 690 pads per sector, which corresponds to a total of 136, 560 pads for

all 24 sectors.

The bottom panel of Fig. 5.3 shows a cross-section view of the MWPC on the pad plane. The

MWPC consists of three planes of wires and the pad plane. The first two are the gating grid and the

ground grid, which together define the drift region of the TPC. The third wire plane is the anode wire

plane, and it is set to a high voltage to provide the necessary electric field to avalanche the electrons

from the primary ionization. Underneath the anode wires is a set of readout pads, on which the

amplified signal from the primary ionization is collected.



29

TPC Wheel 
Diameter 4m

1750 Inner Pads
2.85 mm x 11.5 mm

1.27 m from Center

60 cm from Center

3940 Outer Pads
6.2 mm x 19.5 mm

1st Row Inner Sector

1st Row Outer Sector

52 mm
48 mm

(7 x 48) + (5 x 52) = 596 mm

291 mm

61
3

m
m

65
0

m
m

20 mm RADIAL SPCACING
31 x 20 = 620 mm

3.35 mm Cross Spacing

6.7 mm Cross Spacing

14
3

x
6.

7
=

95
8.

1
m

m
0.6 cm

0.4 cm
cm

cm
0.2

0.2

2.0 cm pitch

1.2 cm pitch

outer inner

Ground plane (75−um diameter)

Gating grid (75−um diameter)

Anode wires (20−um diameter):

Pad, inner subsector

Pad, outer subsector

Figure 5.3: TPC pad plane layout. Top panel shows TPC endview of 24 sectors, the middle panel
shows pad layout of one of them, the bottom panel shows the detail of wires above the pad plane.
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Figure 5.4: Drift lines in a typical MWPC. Drifting electrons are collected on the gating grid (a)
until the gate is opened by a triggering event (b). The slow positive ions are blocked from entering
the drift region by closing the gating grid after the electrons have drifted through. The motion of
positive ions produced in the avalanche induces a signal on the segmented pad plane to provide
precise measurements of ionization along the wire. This plot is from [85]
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gating grid

ground grid

anode wires

Figure 5.5: Equipotentials from drift volume to pad plane for an inner subsector (top) and an outer
subsector (bottom). Equipotential lines indicate that the uniform drift field region starts at the cath-
ode and almost extends to the gating grid. This is followed by a higher, still nearly uniform, field
up to the ground wire plane. After that, the field increases up to the surface of the anode wires.
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By biasing alternating wires on the gating grid positive and negative with respect to a reference

voltage, the passage of ionization electrons is prohibited (see Fig. 5.4). When all wires are at the

reference voltage, the nearby equi-potential lines (Fig. 5.5) are nearly parallel, allowing the passage

of ionization electrons. The reference voltage on the gating grid is set such that when the grid

is open, the grid is electrostatically transparent to drifting electrons. The gating grid is closed by

shifting the voltages on alternate wires up or down symmetrically, leaving the average potential

unchanged.

The induced signal on the pads is amplified/filtered by a set of CMOS integrated circuits consist-

ing of a pre-amplifier and shaper circuit followed by a Switched Capacity Array (SCA) and a 10 bit

Analog-to-Digital Converter (ADC). These circuits can sample the arrival of electrons into at most

512 time buckets. The position of the ionizing particle along the drift direction is reconstructed by

converting the time bucket to position by knowing the drift velocity. The 512 time buckets together

with the 136, 560 channels on the sectors allow us to capture a 3-D image with a resolution of 70

megapixels.

The performance of the TPC during its year-one data-taking was found to meet the original

design specifications[79]. For reference, the standard deviation of the position resolution for points

along a track traversing the TPC parallel to the pad plane was found to be 0.5 mm. The momentum

resolution was determined to be δp/p < 2% for tracks with momentum p = 500 MeV/c. The

resolution in ionization energy loss (dE/dx) was found to reach 8% for tracks measured over the

entire radial dimension of the TPC.

5.3 Ring Image C̃erenkov Detector

The Ring Image C̃erenkov (RICH)[80, 81] module, schematically depicted in Fig. 5.6, consists

of a liquid radiator and a photo-sensitive cathode with a 2-dimensional readout. It is placed at

midrapidity and covers an area of 1 m2.

A charged particle emits light in a medium if its velocity is greater than the local phase velocity



33

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������

�������������������������������������

�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

CsI film
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

10 mm

5 mm

80 mm

4 mm

radiator

quartz window

collection 
wire electrode

proximity gap

wire cathode

sense wires
pad cathode 

charged particle
front end 
electronics

with 500 nm

Figure 5.6: Schematic cross section of the RICH detector module.

Figure 5.7: C̃erenkov radiation.
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of light [82, 83]. The ring image on the pad plane results from photoelectrons produced by the

C̃erenkov cone (Fig. 5.7) and the ring radius is related to the velocity of the particle. Knowing

momenta from the TPC and velocity from RICH, the mass of the particle can be determined.

Year-one data from RICH shows that it performed well, extending the particle identification

capabilities of STAR to ∼ 3 GeV/c for pions and kaons, and ∼ 5 GeV/c for protons - much higher

than is possible using the dE/dx signal from the TPC alone. Data from RICH are not used in

this dissertation because its solid angle coverage is too limited for the present type of elliptic flow

studies.

5.4 Trigger

The trigger must make decisions in less than one microsecond based on the total event multi-

plicity, coarse variations in multiplicity topology, event vertex location, and remnant nucleon mul-

tiplicities. During year-one data taking, the trigger was based on the CTB and the ZDC.

The CTB (Fig. 5.8) is a series of scintillator slats placed like barrel staves about the beam

interaction point, and attached to the exterior of the STAR TPC. It consists of 240 slats (4 in η

and 60 in φ). The scintillators are BC408 plastic 1 cm thick by 21 cm wide. In order to match

the η coverage of the Electromagnetic Calorimeter (not installed in the year-one configuration), the

scintillators were chosen to be 130 and 112.5 cm long, which gives an η coverage of 0.0 < η < 0.50

and 0.50 < η < 0.97. The CTB was used to trigger on central events, as the signal is correlated to

the multiplicity at mid-rapidity.

The ZDC consists of two hadronic calorimeters at ±18 m from the detector center and at close

to zero degrees (θ < 2 mrad) relative to the beam axis (Fig. 5.9). The ZDC are designed to measure

neutrons emitted from nuclear fragments of the spectator matter.

Fig. 5.10 shows the correlation between ZDC and CTB. For large impact parameters, the signal

in both ZDC and CTB is small because only a few spectator neutrons are produced and multiplic-

ity in the central region is low. The CTB signal decreases continuously as the impact parameter
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Figure 5.8: Central Trigger Barrel.
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Figure 5.9: Zero Degree Calorimeters

Figure 5.10: Correlation between pulse heights of Zero Degree Calorimeters and Central Trigger
Barrel in a minimum bias trigger.
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decreases while the ZDC signal increases to saturation, then decreases eventually for small impact

parameters. The combined information can be used to provide a trigger for collision centrality.



Chapter 6

dE/dx Calibration

6.1 Introduction

6.1.1 Bethe-Bloch function

For a particle with charge Z (in units of e) and speed β = v/c passing through a medium with

density ρ, the mean energy loss it suffers can be described by the Bethe-Bloch formula:

−
〈

dE

dx

〉

= 2πNor
2
emec

2ρ
Zz2

Aβ2

[

ln

(

2meγ
2v2EM

I2

)

− 2β2

]

. (6.1)

where No is Avogadro’s number, me is the electron mass, re (= e2

me
) is the classical electron radius,

c is the speed of light, z is the atomic number of the absorbing material, A is the atomic weight of the

absorbing material, γ = 1/
√

1 − β2, I is the mean excitation energy, andEM (= 2mec
2β2/(1−β2))

is the maximum transferable energy in a single collision.

Fig. 6.1 illustrates graphically the relation between dE/dx and βγ. In the low energy region

(i.e. βγ < 0.5), the energy loss is approximately proportional to β−2. As one approaches the region

where βγ = 1−3, all particle species go through a broad minimum (“minimum ionization”). As this

region is passed, the ionization rate begins to increase roughly proportional to log(βγ) (“relativistic

rise region”) then finally saturates (“Fermi plateau”).

6.1.2 Energy loss distribution

The ionization process of particles traveling in a medium can be modeled in terms of two com-

ponents: primary and secondary interactions. Primary ionization is due to direct processes between

the charged particle and the medium, while secondary processes involve the subsequent interactions

38
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Figure 6.1: Ionization energy loss of a function of βγ.

of the primary ionization. The cross section for the primary ionization can be characterized by the

Rutherford scattering formula,

(6.2)
w(E) =

2πz2e4

mev2
No

Z

A

(1 − β2E/EM)

E2
, 0 ≤ E ≤ EM ,

w(E) = 0, E > EM .

Because the energy dependence is E−2 in the Rutherford cross section, the distribution is not

bounded in the region 0 ≤ E ≤ EM . This causes a significant possibility for producing high energy

primary electrons, which can produce additional ionization in subsequent interactions if their energy

is sufficient (i.e., above the ionization potential of the medium). As a consequence of that, the final

energy distribution is produced by the convolution of two distributions and has a shape which is

characterised by a long tail (the “Landau tail [84]”) at the high energy side, instead of a Gaussian

shape.
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Figure 6.2: Landau distribution.

For a distribution of the Landau type, the mean value and the most probable value are not

identical (Fig. 6.2). The mean is not a desirable parameter to measure in experiment, because it

is quite sensitive to the number of counts in the tail of the distribution, and is subject to larger

fluctuations than the peak of the distribution. The most probable value is a more robust observable

and it is usually approximated by the truncated mean, defined as

〈dE
dx

〉trunc =
1

M

M
∑

i=1

(
dE

dx
)i, (6.3)

where (dEdx )i are the N samples in order of increasing size, and M is an integer M ' fN , where f

is a fraction typically between 0.50 and 0.85. Such an approach is the most common algorithm used

in experiments. In the STAR TPC, the maximum possible number of dE/dx samples is N = 45,

which is the number of pad rows in the TPC.
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6.2 Calibration

6.2.1 Pad row variation

Due to variations in local gas pressure, gas gain, electronic gain etc., the final measured dE/dx

could vary up or down by an arbitrary factor. To compensate for these variations, dE/dx samples

for minimum ionization pion tracks are fitted to the Landau distribution for a given sector and pad

row. The most probable values from the fitting are plotted as a function of pad row index (which

runs from 1 to 45) and are shown in Fig. 6.3. The plot shows that the variation is on the order of

10% to 25 % (the variation depends on sector as well). Also, some pad rows with bad performance

can be identified through a plot of this type.

pad row number
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dE
/d

x 
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m
)
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1.1

1.2

1.3

1.4

1.5

1.6 TPC sector 2

Figure 6.3: dE/dx as a function of index of pad row for sector # 2. The averaged value is drawn
as a dotted line. Error bars are smaller than the symbol size.

These pad row variations can be reduced by making gain corrections. The resulting improve-

ment in dE/dx resolution is on the order of 7% and will be shown later in this chapter.
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6.2.2 Drift distance dependence

When ionization electrons drift towards the pad plane, the signal can be reduced by re-attachment

of ions with opposite charge along the drift path. Such signal attenuation causes the dE/dx of clus-

ters further away from the pad plane to appear smaller. Fig. 6.4 shows that the dE/dx decreases as

the drift length increases (the maximum drift length corresponds to z = 0 in the plot). The distortion

caused by this effect can be cancelled out by application of the appropriate correction factor.
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Figure 6.4: dE/dx as a function of z coordinate in TPC. Solid circles and open circles stand for
inner sector and outer sector, respectively. The sample for this plot is the same sample as used in
Fig. 6.3.

6.2.3 dx dependence

dE/dx versus dx is shown in Fig. 6.5.

We can see that dE/dx rises continuously as dx increases in the region dx < 2.5 cm. That can

be understood as follows: the width of the dE/dx distribution for samples with large dx is narrower

than that of samples with small dx (just like more statistics reduces the error on a measurement).

Then for a given amount of energy loss associated with the track, the most probable value (that is,

the position of the peak of the Landau shape) for large dE/dx samples has to shift to a higher value
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Figure 6.5: dE/dx as a function of dx in TPC. Solid circles and open circles stand for inner sector
and outer sector, respectively. The sample for this plot is the same sample as used in Fig. 6.3.

in order to leave the total energy of ionization unchanged.

6.3 Truncation ratio optimization

What needs to be optimized for best Particle Identification (PID) is not the resolution but the

particle separation power, which is defined as:

separation power =
separation
resolution

=
(dE/dx)A − (dE/dx)B

σ(dE/dx)A,B
, (6.4)

where σ(dE/dx)A,B is the resolution from either A or B (both are normally the same).

To study the separation power as a function of truncation ratio, pions with momentum between

350 MeV/c and 450 MeV/c and protons with momentum between 600 MeV/c and 650 MeV/c

were considered. Fig. 6.6 shows that 60% truncation (see Eq. 6.3) gives the best separation power.
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Figure 6.6: The separation power as a function of truncation ratio.

6.4 Improvement on dE/dx resolution

The dE/dx resolution is characterised by the sigma of a single trial, which is A in the

following equation:

σ(dE/dx/〈dE/dx〉) =
A√
M
, (6.5)

where M is as defined in Eq. 6.3.

The relation between σ(dE/dx/〈dE/dx〉) andM is shown in Fig. 6.7. The sigma of a single trial

is improved by 9.6 % (drops from 0.5169 ± 0.0004 to 0.4675 ± 0.0003) by applying the various

dE/dx calibrations mentioned in this chapter. If combined with truncation ratio optimization, the

total improvement in dE/dx resolution is about 13% (sigma of a single trial drops from 0.5168±

0.0004 to 0.4675 ± 0.0003).
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Figure 6.7: σ(dE/dx/〈dE/dx〉) versus number of points used in dE/dx calculation. Squares and
circles stand for without dE/dx calibration, and with dE/dx calibration, respectively. Triangles
stand for truncation ratio optimized for calibrated dE/dx.



Chapter 7

Purity PID

7.1 Purity

The purity for identifying a particle as belonging to a specific particle type is defined as that

particle’s yield divided by the sum of yields for all particles at the same dE/dx. To get the purity,

multi-Gaussian fitting of dE/dx distributions in a momentum range must be applied. The quality of

the fitting directly affects the PID, especially in the momentum region where dE/dx bands are close

to each other. Additional constraints are used in order to extend the multi-Gaussian fitting towards

the region of band merging, namely: 1) the use of pre-calibrated Bethe-Bloch formulae allows us to

constrain the expected 〈dE/dx〉 for each particle type, and 2) the use of pre-calculated resolution

allows us to constrain the σ of the various Gaussians.

It is observed that dE/dx resolution depends on centrality and pseudorapidity (the sigma of

a single trial increases ∼ 11% from peripheral events to central events, and increases ∼ 18% be-

tween 0.9 ≤ |η| ≤ 1.0 and 0. ≤ |η| ≤ 0.1. So in the Bethe-Bloch calibration, resolution calculation

and multi-Gaussian fitting are done with different cuts according to centralities, pseudorapidities,

etc.

7.2 Bethe-Bloch calibration

To obtain a good set of samples for the Bethe-Bloch calibration, pions, kaons and protons from

the well-separated region on the plot of dE/dx versus p were selected. Fig. 7.1 shows dE/dx

versus βγ from the combination of different particle types. The fact that all particle types lie on

a single universal curve confirms that calibration of the dE/dx signal and the various systematic

effects arising from the detector are under control.

46
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Figure 7.1: dE/dx versus βγ. The circles, triangles and squares represent pions, kaons and protons,
respectively.

Fig. 7.2 shows the dE/dx versus p for all particles with the expected value from the calibrated

Bethe-Bloch function.

7.3 Determine sigma of a single trial

The sigma of a single trial (see Chapter on dE/dx Calibration) is obtained by fitting

σ(dE/dx/〈dE/dx〉) versus number of points used in the dE/dx calculation for minimum ionizing

pions. STAR has different data “productions” due to the continuous software revision and significant

change in dE/dx calibration happened between production P00hm and P01he.

Table 7.1 lists the sigma of a single trial for data production P00hm, from which we can

see the resolution (which is characterised by the sigma of a single trial) degrades for increasing

event multiplicity. This can be understood as being related to the difficulty of track reconstruction

as the hit density increases in the detector.

For data production P01he, a clear dependence of resolution on pseudorapidity is observed.

Such a dependence maybe due to tracks with high dip angle tending to have more hits with larger
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Figure 7.2: dE/dx versus momentum. Curves are based on the calibrated Bethe-Bloch formula.
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< 26% 26% − 10% top 10%
0.527 0.554 0.586

Table 7.1: sigma of a single trial for different centralities. These numbers are for STAR P00hm
data production.

dx, which can reduce the width of the dE/dx distribution.

Table 7.2 lists sigma of a single trial for STAR data production P01he .

|η| < 26% 26% − 10% top 10%
0.0 − 0.1 0.497981 0.514528 0.550111
0.1 − 0.2 0.495237 0.535365 0.545285
0.2 − 0.3 0.495062 0.50982 0.536676
0.3 − 0.4 0.472484 0.518347 0.550063
0.4 − 0.5 0.465823 0.498163 0.513364
0.5 − 0.6 0.45885 0.489383 0.509784
0.6 − 0.7 0.448218 0.464715 0.480572
0.7 − 0.8 0.435925 0.472486 0.476077
0.8 − 0.9 0.425025 0.445808 0.459282
0.9 − 1.0 0.41713 0.451734 0.449447

Table 7.2: sigma of a single trial for different centralities and different pseudorapidities. These
numbers are for STAR P01he data production

7.4 Multi-Gaussian fitting

In the momentum region where particles are well separated, the multi-Gaussian fitting is straight-

forward. As the fitting extends to the semi-merged region, two constraints were used. 1. The σ is

constrained by the pre-calculated resolution, which should be a constant over the momentum range

0-4 GeV/c (confirmed by studying the dE/dx of charged kaons identified through decays in flight

to a muon and a neutrino). 2. The expected band center is constrained by the pre-calibrated Bethe-

Bloch curve. Fig. 7.3 shows multi-Gaussian fits for central events at |η| ≤ 0.1.
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Figure 7.3: Multi-Gaussian fitting of dE/dx for different momentum regions.
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7.5 Electron contamination

In regions where bands for different particles merge together, the dE/dx fitting is less reliable.

A notable case in point is electron contamination. To solve this problem, for each particle type,

amplitudes at the band center (heights of the Gaussians from the multi-Gaussian fitting) were re-

fitted as a function of momentum. Fig. 7.4 shows such a fitting. In the plot, the amplitude of the

electron band center in the clean region (0.2 < p < 0.4 GeV/c) is fitted by an exponential function,

then extrapolated to the merged region (0.1 < p < 0.2 and 0.4 < p < 0.6 GeV/c). For the region

where p < 0.1 GeV/c, the electron band and pion band are well separated, so their PID can be

performed by simply cutting on dE/dx.
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Figure 7.4: Amplitudes at the band center as a function of momentum. The circles, crosses, trian-
gles and squares represent pions, electrons, kaons and protons, respectively. Dotted lines show the
extrapolation. Amplitudes of electrons in the region 0.6 < p < 0.7 GeV/c are from multi-Gaussian
fits between the kaon band and the proton band. These result demonstrate that the extrapolation of
electron band amplitudes is reliable.
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7.6 Purity result

Figure 7.5: dE/dx versus p for particles with identities asigned according to maximum purity .

Fig. 7.5 shows the dE/dx versus p plot for identified particles with different colors representing

different particle types. Particles in the region where the kaon band, proton band and pion band

merge together are mostly identified as pions but the PID is based on extrapolation, so a different

color (shade if black/white) is used to distinguish them from pions identified without extrapolation.

Fig. 7.5 is based on minimum bias events, and the multi-Gaussian fittings were done for each

cell in the following parameter space:

1.) 3 centrality bins: (100% − 26%, 26% − 10%, > 10% central).

2.) 2 dca bins: (0 − 3 cm, > 3 cm).

3.) 2 charge bins: (+,−).

4.) 100 equally-spaced momentum bins covering 0 GeV/c to 2GeV/c.
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5.) 10 equally-spaced pseudorapidity bins covering 0 to 1. If |η| > 1.0, it was taken as belonging

to the last bin.

6.) 6 equally-spaced intervals of N (number of dE/dx samples) covering 0 to 30. If N > 30,

it was taken as belonging to the last bin.

If pt cuts are chosen instead of p cuts when applying the multi-Gaussian dE/dx fitting, a narrow

η cut together with the pt cut is necessary because switching to dE/dx versus pt makes the reso-

lution worse. In Fig. 7.5, no pt cuts were used. In order to make the result reliable if a conversion

from p to pt is needed when using the PID result, fine binning in p was used (20 MeV/c per p bin),

as well as fine binning in η (0.1 per bin).



Chapter 8

Elliptic Flow

8.1 Introduction

In non-central heavy-ion collisions, the initial spatial deformation due to geometry and the pres-

sure developed early in the collision causes azimuthal momentum-space anisotropy, which is corre-

lated with the reaction plane [2, 3, 58, 86]. Measurements of this correlation, known as anisotropic

transverse flow, provides insight into the evolution of the early stage of a relativistic heavy-ion col-

lision [87]. Elliptic flow is characterized by the second harmonic coefficient v2 of an azimuthal

Fourier decomposition of the momentum distribution [4, 5, 6], and has been observed and exten-

sively studied in nuclear collisions from sub-relativistic energies on up to RHIC. At top AGS and

SPS energies, elliptic flow is inferred to be a relative enhancement of emission in the plane of the

reaction.

Elliptic flow is developed mostly in the first fm/c after the collision and thus provides informa-

tion about the early-time thermalization achieved in the collisions [7]. Generally speaking, large

values of flow are considered signatures of hydrodynamic behavior [4]. Models in which the collid-

ing nuclei resemble interacting volumes of dilute gas — the low density limit (LDL) — represent

the limit of mean free path that is the opposite of hydrodynamics. It remains unclear to what extent

the LDL picture can describe the data at RHIC, and valuable insights can be gained from mapping

out the conditions under which hydrodynamic and LDL calculations can reproduce the measured

elliptic flow.

Anisotropic flow refers to correlations in particle emission with respect to the reaction plane.

The reaction plane orientation is not known in experiment, and anisotropic flow is usually recon-

structed from the two-particle azimuthal correlations.

54
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But there are several possible sources of azimuthal correlations that are unrelated to the reaction

plane — examples include correlations caused by resonance decays, (mini)jets, strings, quantum

statistics effects, final state interactions (particularly Coulomb effects), momentum conservation,

etc. The present study does not distinguish between the various effects in this overall category, but

classifies their combined effect as “non-flow” correlations.

Conventional flow analyses are equivalent to averaging over correlation observables constructed

from pairs of particles. When such analyses are applied to relativistic nuclear collisions where par-

ticle multiplicities can be as high as a few thousand, the possible new information contained in

multiplets higher than pairs remains untapped. A previous study of high-order flow effects fo-

cused on measuring the extent to which all fragments contribute to the observed flow signal [8],

and amounted to an indirect means of separating flow and non-flow correlations. Given that flow

analyses based on pair correlations are sensitive to both flow and non-flow effects, the present work

investigates correlation observables constructed from particle quadruplets. The cumulant formal-

ism removes the lower-order correlations which are present among any set of four particles, leaving

only the effect from the so-called “pure” quadruplet correlation. The simplest cumulant approach,

in terms of both concept and implementation, partitions observed events into four subevents. In the

present study, the four-subevent approach is demonstrated, but our main focus is on a more elaborate

cumulant method, developed by Borghini, Dinh and Ollitrault [88, 89]. There are indications that

non-flow effects contribute at a negligible level to the four-particle cumulant correlation, making it

unnecessary to continue to even higher orders for the purpose of separating the flow and non-flow

signals.

Fluctuations in measured observables invariably are reflected in the statistical errors on the mea-

surements, but in most cases, the symmetry of the fluctuations is such that the measurements are

not systematically biased to higher or lower values by the fluctuations. However, there is a potential

for observables under investigation in this dissertation to suffer bias under the influence of impact
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parameter fluctuations within the studied centrality bins. In particular, the observed multiplicity of

charged particles within the detector acceptance is used to characterize centrality, and especially

within the bin of highest multiplicity, it is clear that the elliptic flow signal must vary over a wide

range, depending on the impact parameter. In the present study, a correction is applied to reduce

this bias to an insignificant level.

The present study begins with a review of the standard pair correlation method, and provides

details concerning the approach adopted in earlier STAR publications [7, 90] for treating non-flow

correlations. A new method of pair flow analysis using the scalar product of flow vectors also is

introduced. In the conventional method, a flow coefficient is calculated by the mean cosine of the

difference in angle of two flow vectors. In the scalar product method, this quantity is weighted by

the lengths of the vectors. The new method offers advantages, and is also simple to apply.

Measurements presented in this dissertation are based on Au+Au data at
√
sNN = 130 GeV

recorded by STAR (Solenoidal Tracker At RHIC) during the summer of 2000. A detailed description

of the detector in its year-one configuration can be found elsewhere [78, 7]. The analysis is based

on 170k events corresponding to a minimum bias trigger. Events with a primary vertex beyond 1

cm radially from the beam or 75 cm longitudinally from the center of the Time Projection Chamber

(TPC) were excluded. Within the selected events, tracks were used for the estimation of the flow

vector if all five of the following conditions were satisfied: they passed within 2 cm of the primary

vertex, they had at least 15 space points in the TPC, the ratio of the number of space points to

the expected maximum number of space points was greater than 0.52, pseudorapidity |η| < 1.3,

and transverse momentum 0.1 < pt < 2.0 GeV/c. Particles over a wider range in η and pt were

correlated with this flow vector as shown in the graphs below. Centrality is characterized in eight

bins of charged particle multiplicity, nch, divided by the maximum observed charged multiplicity,

nmax, with a more stringent cut |η| < 0.75 imposed only for this centrality determination. The

above cuts are essentially the same as used in the previous STAR studies of elliptic flow [7, 90].
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8.2 Two-particle correlation methods

Anisotropic transverse flow manifests itself in the distribution of φ′ = φ − Ψ, where φ is the

measured azimuth for a track in detector coordinates, and Ψ is the azimuth of the estimated reaction

plane in that event. The observed anisotropies are described by a Fourier expansion,

dN/dφ′ ∝ 1 + 2v1 cosφ′ + 2v2 cos 2φ′ + ... . (8.1)

Each measurable harmonic can yield an independent estimate Ψn of the event reaction plane via the

event flow vector Qn:

Qn cosnΨn =
∑

i

wi cosnφi,

Qn sinnΨn =
∑

i

wi sinnφi , (8.2)

where the sums extend over all particles in a given event, and thewi are weights adjusted to optimize

the event plane resolution [92, 6].

Below we also use the representation of the flow vector as a complex number. Real and imagi-

nary parts are equal to the x and y components defined in Eq.8.2:

Qn =
∑

i

wiui, (8.3)

where ui = einφi is a unit vector associated with the i-th particle.

8.2.1 Correlation between flow angles from different subevents. Estimate of non-flow effects.

In order to report anisotropic flow measurements in a detector-independent form, it is customary

to divide each event into two subevents and determine the resolution of the event plane by correlating

the Qn vector for the subevents [91, 6]. In order to estimate the contribution from different non-

flow effects, one can use different ways of partitioning the entire event into two subevents. The

partitioning into subevents where all particles in the same subevent have the same charge ensures

that no pair within that subevent can come from neutral resonance decay. The partition using two
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(pseudo)rapidity regions separated by ∆y ≥ 0.1 should greatly suppress the contribution from

quantum statistics effects and Coulomb (final state) interactions.

Another important observation for the estimate of the non-flow effects is their dependence on

centrality. The correlation between two subevent flow angles is

〈cos(2(Ψ(a)
2 − Ψ

(b)
2 ))〉 ≈ 〈

∑Msub

i=1 ui√
Msub

·
∑Msub

j=1 u∗j√
Msub

〉

=
MsubMsub

Msub
〈uiu∗j 〉

∝ Msub(v
2
2 + g), (8.4)

where Msub is the multiplicity for a sub-event, g denotes the non-flow contribution to two-particle

correlations. For correlations due to small clusters, which are believed responsible for the dominant

non-flow correlations, the strength of the correlation should scale in inverse proportion to the total

multiplicity [88]. The subevent multiplicity is proportional to the total multiplicity, g = g̃/Msub.

Collecting terms, we arrive at

〈cos(2(Ψ(a)
2 − Ψ

(b)
2 ))〉 ∝Msubv

2
2 + g̃. (8.5)

What is important is that the non-flow contribution to 〈cos(2(Ψ(a)
2 − Ψ

(b)
2 ))〉 is approximately in-

dependent of centrality. The typical shape of 〈cos(2(Ψ(a)
2 − Ψ

(b)
2 ))〉 for flow (see, for example,

Fig. 8.1) is peaked at mid-central events due to the fact that for peripheral collisions, Msub is small,

and for central events, v2 is small. In the previous estimates [7, 90] of the systematic errors, we

have set the quantity g̃ = 0.05. The justification for this value was the observation of similar cor-

relations for the first and higher harmonics (we have investigated up to the sixth harmonic). One

could expect the non-flow contribution to be of similar order of magnitude for all these harmon-

ics, and HIJING [93, 94] simulations support this conclusion. Given the value g̃ = 0.05, one

simply estimates the contribution from non-flow effects to the measurement of v2 from the plot of

〈cos(2(Ψ(a)
2 − Ψ

(b)
2 ))〉 using Eq.(8.5).
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Figure 8.1: Correlation between the event plane angles determined from pairs of subevents parti-
tioned randomly (circles), partitioned with opposite sign of pseudorapidity (squares) and partitioned
with opposite sign of charge (crosses). The correlation is plotted as a function of centrality, namely
charged particle multiplicity nch divided by the maximum observed charged multiplicity, nmax.

Fig. 8.1 shows the event plane correlation between two subevents, for each of three differ-

ent subevent partitions. In central events, it is seen that the correlation is stronger in the case of

subevents with opposite sign of charge compared to subevents partitioned randomly. This pattern

might be due to resonance decays to two particles with opposite charge. The spread of the results for

different subevent partitions is about 0.05, which is in accord with the number used for the estimates

of the systematic errors.

The event plane resolution for full events with pt weighting can reach as high as 0.8, as shown

in Fig. 8.2. The v2 as a function of centrality is shown in Fig. 8.3, using different prescriptions to

partition the particles into subevents. Again, partitioning into subevents with opposite sign of charge

yields the highest elliptic flow signal, presumably because of neutral resonance (ρ0, etc.) decay.
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Figure 8.2: The event plane resolution for full events as a function of centrality, using randomly
partitioned subevents with (circles) and without (triangles) pt weight.
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Figure 8.3: Elliptic flow signal v2 as a function of centrality, from study of the correlation between
particle pairs consisting of randomly chosen particles (circles), particles with opposite sign of charge
(crosses), particles with the same sign of charge (triangles) and particles with opposite sign of
pseudorapidity (squares).
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8.2.2 Weighting

The best weight wi(η, pt) is v2(η, pt) itself. In practice, since we know that v2 is approximately

proportional to pt up to about 2 GeV/c, it is convenient to use pt as the weight. It is found that pt

weighting can reduce the statistical error significantly, as demonstrated in Fig. 8.4.

Some detectors have substantial asymmetry in their response as a function of azimuth in detector

coordinates, in which case it is necessary to employ one of two possible compensation methods [6]

to avoid distortion of the measured flow signals. In the present study, no noticeable difference

is observed with and without compensation for detector asymmetry, as expected in light of the

excellent azimuthal symmetry of the STAR TPC. All plots in this dissertation are made without

compensation for detector asymmetry.

8.2.3 Scalar product flow analysis

In a new scalar product method [95], each event is partitioned into two subevents, labeled by

the superscripts a and b. The correlation between two subevents is

〈Qa
n ·Qb

n〉 = 〈v2
nM

aM b〉 , (8.6)

where Ma and M b are the multiplicities for subevents a and b, respectively. The vectors Qa
n and

Qb
n are constructed for the appropriate subevent as per Eq. (8.2).

Given the above, the flow relative to the true reaction plane can be readily calculated from unit

momentum vectors u(η, pt) for the analyzed tracks by using Eq. (8.6) for the particle relative to the

2M other particles, and then dividing by the square root of Eq. (8.6) for the subevents. This gives

vn(η, pt) =
〈Qn · u(η, pt)〉
2
√

〈Qa
n ·Qb

n〉
. (8.7)

Auto-correlations are removed by subtracting particle i in the calculation of Q when taking the

scalar product with ui. Note that this method weights events with the magnitude of the Q vector,
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Figure 8.4: The upper panel shows v2 versus centrality using the conventional method, where the
circles and triangles represent v2 with and without pt weighting, respectively. The statistical error
is smaller than the symbol size. The lower panel shows the statistical error on v2 with pt weighting
divided by the same without weighting.
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Figure 8.5: The upper panel presents v2 versus centrality from the scalar product method (triangles)
and the conventional random subevent method (circles). All statistical errors are smaller than the
symbol size. The statistical error for the scalar product method divided by that for the conventional
method is shown in the lower panel.
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and if Qn is replaced by its unit vector, the above reduces to 〈cosn(φ − Ψ)〉, the conventional

correlation method.

Fig. 8.5 demonstrates that the scalar product method gives the same result as the conventional

method. In this calculation, the subevents are generated by random partitioning. Monte Carlo

studies indicate that the statistical error from the scalar product method is smaller than that from

the conventional method if the event plane resolution is not very large. In the case of Au + Au

at
√
sNN = 130 GeV, the event plane resolution is such that the scalar product method yields a

smaller statistical error over all centrality bins compared to the conventional method, with the largest

improvement being obtained for the most central and most peripheral events, where the resolutions

are lowest. In addition to the benefit of reduced statistical errors, the scalar product method is very

simple to implement.

8.3 Four-particle correlations

8.3.1 Motivation for Cumulants

In experiments, it is necessary to rely on correlations between particles to determine the event

plane since the reaction plane is not a direct observable. The assumption underlying conventional

pair correlation analyses (including the scalar product method discussed in section 8.2.3 above)

is that non-flow correlations of the type mentioned in section 8.1 are negligible compared to the

flow, or at most, are comparable to other systematic uncertainties. In past studies [6, 96, 97], non-

flow correlations have been discussed with specific reference to their origin, such as momentum

conservation, HBT, Coulomb effect, jets, resonance decays, etc. In the first two studies of elliptic

flow in STAR [7, 90], the non-flow effect was partly cancelled and partly estimated as explained

in section 8.2.1. This estimate played a role in determining the systematic error on the published

measurements.



65

Anisotropic flow is a genuine multiparticle phenomenon, which justifies use of the term collec-

tive flow. It means that if one considers many-particle correlations instead of just two-particle cor-

relations, the relative contribution of non-flow effects (due to few particle clusters) should decrease.

Considering many-particle correlations, one has to subtract the contribution from correlations due

to lower-order multiplets. Formally, it means that one should use cumulants [98, 99, 100, 96, 88]

instead of simple correlation functions. Let us explain this with an example for four-particle corre-

lations. The correlation between two particles is

〈un,1u∗n,2〉 ≡ 〈einφ1e−inφ2〉 = v2
n + δn , (8.8)

where n is the harmonic, and the average is taken over all pairs of particles in a given rapidity

and transverse momentum region, and over all events in an event sample. The δn represents the

contribution to the pair correlation from non-flow effects. Correlating four particles, one gets

〈un,1un,2u∗n,3u∗n,4〉 = v4
n + 2 · 2 · v2

nδn + 2δ2n . (8.9)

In this expression, two factors of “2” in front of the middle term correspond to the two ways of

pairing (1,3)(2,4) and (1,4)(2,3) and account for the possibility to have non-flow effects in the first

pair and flow correlations in the second pair and vice versa. The factor “2” in front of the last term

is due to the two ways of pairing. The pure four-particle non-flow correlation is omitted from this

expression — see the discussion below about the possible magnitude of such a contribution. What

is remarkable is that if one subtracts from the expression (8.9) twice the square of the expression

(8.8), one is left with only the flow contributions

〈〈un,1un,2u∗n,3u∗n,4〉〉

≡ 〈un,1un,2u∗n,3u∗n,4〉 − 2〈un,1u∗n,2〉2 = −v4
n , (8.10)

where the notation 〈〈...〉〉 is used for the cumulant. The cumulant of order two is just 〈〈un,1u∗n,2〉〉 =

〈un,1u∗n,2〉.
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In flow analysis, one is interested not only in so-called “global” flow values, but also in differen-

tial flow as function of rapidity and transverse momentum. In a four-particle correlation approach,

this also can be done in a similar manner, now correlating a particle, for example in a particular pt

bin, with three particles from a common “pool”. Assuming that the particle “b” is the one from a

particular bin, one gets for a differential flow study

〈un,bu∗n,1〉 = vn;bvn + δn;b , (8.11)

where we have introduced the notation vn;b for the flow value corresponding to the bin under study,

and δn;b for the corresponding non-flow contribution. Then for the correlation with three particles

from the pool,

〈un,bun,1u∗n,2u∗n,3〉 =

vn;bv
3
n + 2 · v2

nδn;b + 2 · vnvn;bδn + 2δnδn;b . (8.12)

In this case, in order to remove the non-flow contribution, one has to subtract from (8.12) twice the

product of expressions (8.8) and (8.11).

〈un,bun,1u∗n,2u∗n,3〉 − 2〈un,bu∗n,1〉〈un,1u∗n,2〉 = (8.13)

−v3
nvn;b .

Assuming that the average flow value for the particles in the pool is known, one gets the desired

differential flow value for the particular bin under study.

In Eq.(8.9), we have neglected the contribution from the pure four-particle correlations due to

non-flow effects. Let us now estimate the upper limit for such a contribution. Assume that all

particles are produced via four-particle clusters. All daughters of the decay of such a cluster could

in principle be within 1–2 units of rapidity from each other. Then the contribution would be

f/M3, (8.14)
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where M is the total multiplicity within those 1–2 units of rapidity, and f is 〈(cos 2(φ1 − φ2))
2〉

averaged over all cluster decay products. Assuming a perfect alignment, f = 1, and multiplicity

M = 1000, this would give us the possible error in v2 measurements of the order of

δv ∼ (v4
2 + 1/10003)1/4 − v2 , (8.15)

which would give only 2% relative error on v2 signal of 0.01, and drops very rapidly with increasing

real v2 signal. Note that this calculation is for the case of 100% of the particle production via four-

particle clusters and a perfect alignment of decay products. A more realistic scenario would give a

much smaller estimate.

8.3.2 Four-subevent method

In order to apply the four-particle correlation approach to the analysis of real data, one should

perform an average over all possible quadruplets of particles in a given event. Bearing in mind that

the average multiplicity in a central STAR event is well beyond a thousand, it becomes a nontrivial

task. The simplest way to proceed is the four-subevent method where one partitions all tracks (for

example, randomly) into four groups (subevents) and calculates a flow vector for each of the groups,

Qn =
∑

i

ui , (8.16)

where the sum is over all particles in the group. Using these subevents, the problem becomes much

simpler computationally. For example,

〈un,1un,2u∗n,3u∗n,4〉 = 〈Qn,1Qn,2Q
∗
n,3Q

∗
n,4/(M1M2M3M4)〉 , (8.17)

where Mi are the corresponding subevent multiplicities. The cumulant calculation is straightfor-

ward:

〈〈un,1un,2u∗n,3u∗n,4〉〉 =

〈
Qn,1Qn,2Q

∗
n,3Q

∗
n,4

M1M2M3M4
〉

−2
(

〈Qn,1Q∗
n,2/(M1M2)〉

)2
. (8.18)
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The four-subevent method is relatively simple, both in logic and in implementation. The price

for these benefits is lower statistical power, because the method does not take into account all pos-

sible quadruplets. A more general cumulant formalism, based on the cumulant generating function

[96, 88] offers advantages for a four-particle analysis in the context of the present limited sample

size.

8.3.3 Cumulant and generating function

The cumulant and generating function approach offers a formal and convenient way to study

flow and non-flow contributions systematically. Following the method of Ref. [88], the cumulant to

order four is defined by

〈〈u1u2u
∗
3u

∗
4〉〉 ≡ 〈u1u2u

∗
3u

∗
4〉 −

〈u1u
∗
3〉〈u2u

∗
4〉 − 〈u1u

∗
4〉〈u2u

∗
3〉 , (8.19)

where, as above, the double angle bracket notation represents the cumulant expression shown ex-

plicitly on the right-hand side, and from here on, the index for the harmonic order n in the subscript

of u is omitted.

The cumulant 〈〈u1u2u
∗
3u

∗
4〉〉 involves only pure four-particle correlations, since the two-particle

correlations among the quadruplets have been explicitly subtracted away.

In the presence of flow, the cumulant becomes

〈〈u1u2u
∗
3u

∗
4〉〉 = −v4

n +O(
1

M3
+
v2
2n

M2
) , (8.20)

where M is the multiplicity of the events, the term of order 1/M 3 represents the remaining four-

particle non-flow effects, and the term of order v2
2n/M

2 is the contribution of the 2n higher har-

monic. The cumulant to higher orders and the corresponding generalization has also been deter-

mined [88]. Likewise, the cumulant of order two reduces to the equivalent of a pair correlation

analysis of the conventional type. Statistical uncertainties associated with a cumulant analysis in-

crease with increasing order. We find that statistics from STAR year-one data are adequate for study
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of the 4th-order cumulant, but it is not yet feasible to investigate orders higher than four.

The definition of the cumulant is simple, but it is tedious to calculate the moments term-by-term

on the right-hand side of Eq. (8.19). Fortunately, the cumulant can be computed more easily from

the generating function [88],

Gn(z) =

M
∏

j=1

(

1 +
z∗uj + zu∗j

M

)

, (8.21)

where z ≡ |z|eiα is an arbitrary complex number, and z∗ denotes its complex conjugate.

The generating function itself has no direct physical meaning, but the coefficients of the expan-

sion of 〈Gn〉 in powers of z, z∗ yield the correlations of interest:

〈Gn〉 = 1 + 〈M − 1

M
〉|z|2〈u1u

∗
2〉 (8.22)

+ 〈(M − 1)(M − 2)(M − 3)

4M3
〉|z|4〈u1u2u

∗
3u

∗
4〉 + ....

One can use these correlations to construct the cumulants. In the limit of large M , 〈Gn〉 can be

used to obtain the cumulant generating function directly:

M ·
(

〈Gn(z)〉1/M − 1
)

=

∑

k

|z|2k
(k!)2

〈〈u1...uku
∗
k+1...u

∗
2k〉〉 . (8.23)

The left-hand side of Eq. (8.23) is what is measured, and in order to extract the cumulants on the

right, k equations of the form of Eq. (8.23) are needed to solve for k undetermined parameters.

This can be accomplished by repeating the process with k different values of |z|. It is found that

suggested magnitudes of |z| in Ref. [88], namely r0
√
p with r0 = 1.5 and p = 1, · · · k, are fairly

good, since results from optimized values [101] of r0 show almost no difference. Results in this

dissertation are by default calculated with r0 = 1.5.

For experimental analysis, it is sufficient to take the first three terms in Eq. (8.23). Once the

cumulant has been computed, extracting the integrated flow value is straightforward because, for

instance, v4
n = −〈〈u1u2u

∗
3u

∗
4〉〉.
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When a non-unit weight is used, the integrated flow value described above becomes 〈w cosnφ ′〉,

which is not exactly vn but an approximation. However, the differential flow can be calculated

exactly (see below) no matter what weight is used. The integrated flow with non-unit weight can be

obtained by integrating the differential flow. All integrated flow results in this dissertation (except

for results from the four-subevent method) are obtained by integrating over the differential flow.

For differential flow (flow in a bin of η and/or pt), Eq. (8.23) is replaced by

〈udGn(z)〉
〈Gn(z)〉

≡

∑

k,l

z∗kzl

k! l!
〈〈udu1...uku

∗
k+1...u

∗
k+l〉〉 . (8.24)

where ud is the unit vector for a particle in the selected bin. Following a similar procedure as in the

case of the integrated flow, the cumulant 〈〈udu1u
∗
2u

∗
3〉〉 is computed, but it now contains the angle of

the one particle of interest and three other particles from the pool. Then the differential flow is [88]

vn = − 〈〈udu1u
∗
2u

∗
3〉〉

(−〈〈u1u2u∗3u
∗
4〉〉 )3/4

. (8.25)

Please note that Eq. 8.25 is for unit weight. It can be easily generalized for non-unit weight, and

the formula still holds.

8.3.4 Simulations

In order to test the cumulant method as well as the analysis procedure, the MEVSIM event gen-

erator [102] has been used to make events with various mixtures of flow and non-flow effects. In

all cases, the number of simulated events in a data set is 20k, and the multiplicity is 500. Fig. 8.6

shows one such set of simulations. Nine data sets with v2 = 0.10 were produced, then a simple

non-flow effect consisting of embedded back-to-back track pairs was introduced at various levels,

ranging from zero up to 80 pairs per simulated event. These pairs simulate resonances which decay

to two daughters with a large energy release. In Fig. 8.6, we consider the scenario where the embed-

ded pairs themselves are correlated with the event plane with the same v2 = 0.10. Fig. 8.6 shows
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Figure 8.6: Reconstructed v2 from the conventional method (circles), from the 2nd-order cumulant
method (triangles), and from the 4th-order cumulant method (stars), for simulated events as a func-
tion of number of embedded back-to-back track pairs. The horizontal dashed line marks the level
of the true elliptic flow v2 = 0.10, as imposed on the simulated events, including the back-to-back
track pairs. The statistical error is smaller than the symbol size. The multiplicity for all events is
500.

that the 4th-order cumulant v2 always reconstructs the expected 10% v2, while the v2 from the pair

correlation analysis methods can only recover the correct input if non-flow pairs are not embedded.

If back-to-back pairs are instead randomly distributed in azimuth, the true flow decreases and

the expected variation can be computed knowing the number of random tracks. Fig. 8.7 shows such

a simulation, and again it is found that only the 4th-order cumulant v2 agrees with the expected

elliptic flow, while the inferred v2 based on pair correlation analyses is distorted in the presence of

the simulated non-flow effects. The role of resonances produced in real collisions may be closer

to one or the other of the above two simulated scenarios, but in either case, the non-flow effect is

removed by the 4th-order cumulant analysis.

In Fig. 8.8, consideration is given to the possible effect of resonances which decay with smaller

energy release, having an azimuthal opening angle Φ in the laboratory. The simulated events were

generated with an imposed flow v2 = 0.08, while in each event 50 pairs with the same Φ were
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Figure 8.7: Reconstructed v2 from the conventional method (circles), from the 2nd-order cumulant
method (triangles), and from the 4th-order cumulant method (stars), for simulated events as a func-
tion of number of embedded back-to-back track pairs. Unlike in the previous figure, the embedded
back-to-back pairs are randomly distributed relative to the event plane, and so the true resultant v2,
indicated by the dashed line, decreases as more pairs are embedded. The multiplicity for all events
is 500.
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Figure 8.8: Elliptic flow from the conventional method (circles), from the 2nd-order cumulant
method (triangles), and from the 4th-order cumulant method (stars), for simulated events as a func-
tion of azimuthal angle between the two tracks in each of 50 embedded pairs per event, with the 50
pairs each having random orientation relative to the event plane. The horizontal dashed line marks
the level of the true elliptic flow v2 = 0.08.
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embedded, each such pair having a random orientation relative to the event plane. Ten data sets

were produced, with Φ (the abscissa in Fig. 8.8) varying in 20◦ steps between zero and 180◦. Again,

only the 4th-order cumulant v2 (stars) recovers the true elliptic flow signal.
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Figure 8.9: Elliptic flow from the conventional method (circles), and from the 2nd-order (triangles),
4th-order (stars), and 6th-order (crosses) cumulant methods. This is for simulated events as a func-
tion of azimuthal angle between two back-to-back track pairs. The dashed line marks the level of
the true elliptic flow.

In order to test how the various methods respond to non-flow correlations associated with four-

particle clusters, the simulated events in Fig. 8.9 were generated with an imposed flow v2 = 0.10,

after which 25 four-particle clusters were embedded in each event. Each cluster consists of two

back-to-back pairs with an azimuthal opening angle Φ between them. Seven data sets were pro-

duced, with Φ (the abscissa in Fig. 8.9) varying in 15◦ steps between zero and 90◦. The clusters

were oriented such that a track bisecting Φ would contribute to the overall flow with v2 = 0.10.

The 4th-order cumulant (stars) and the 6th-order cumulant (crosses) both reconstruct the true ellip-

tic flow (dotted line). Note that the four-particle correlation introduced by the clusters is 1/M 2

times the pair correlation part, resulting in little difference between v2 from the 4th- and 6th-order

cumulant methods. This result further illustrates the point (see also the end of section 8.3.1) that
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non-flow effects are believed to contribute at a negligible level to the four-particle correlation, and

for this reason, there may be little advantage in extending cumulant analyses to orders higher than

4.

8.3.5 Results from STAR

max/nchn
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2v

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

max/nchn
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2v

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 8.10: Measured elliptic flow versus centrality for Au + Au at
√
sNN = 130 GeV. The circles

show the conventional v2 with estimated systematic uncertainty due to non-flow [104], the stars
show the 4th-order cumulant v2 from the generating function, the crosses show the conventional
v2 from quarter-events, and the squares show the 4th-order cumulant v2 from the four-subevent
method.

Figure 8.10 shows measured elliptic flow versus centrality, where the latter as usual is char-

acterized by charged particle multiplicity nch divided by the maximum observed charged particle

multiplicity, nmax. The conventional v2 (circles), the 4th-order cumulant v2 from the generating

function (stars), and the 4th-order cumulant v2 from the four-subevent method (squares) are com-

pared. The cross symbols in Fig. 8.10 represent the conventional v2 signal for the case where each

observed event is partitioned into four quarter-events, which are then analyzed like independent

events. All tracks in each quarter-event have the same sign of charge, and the same sign of pseu-

dorapidity. Furthermore, the event plane for quarter-events is constructed using only tracks with
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pt < 0.5 GeV/c, which serves to minimize the influence of non-flow associated with high-pt par-

ticles. It is clear that the non-flow effect is present at all centralities, and its relative magnitude is

least at intermediate multiplicities.

Figure 8.11 shows v2 as a function of pseudorapidity and Fig. 8.12 shows v2 as a function of

transverse momentum. The eight panels correspond to the eight centrality bins in Fig. 8.10. These

results illustrate the main disadvantage of the higher-order cumulant approach compared with any

of the two-particle methods, namely, larger statistical errors, and this can be seen to be a serious

shortcoming in cases where simultaneous binning in several variables results in small sample sizes.

Figures 8.13 and 8.14 are again plots of elliptic flow versus pseudorapidity and versus transverse

momentum, respectively. Here the v2 is integrated over centrality bins 2 through 7. Bins 1 and 8 are

not included in this average, otherwise they would significantly increase the statistical error on the

result.

The 4th-order cumulant v2 is systematically about 15% lower than the conventional pair and

cumulant pair calculations, indicating that non-flow effects contribute to v2 analyses of the latter

kind. The v2 signal based on quarter-events (as defined in the discussion of Fig. 8.10) is closer to

the 4th-order cumulant, although still larger on average, implying that this pair analysis prescription

is effective in removing some, but not all, non-flow effects.

Figure 8.14 verifies that the v2(pt) curve flattens above 2 GeV/c [104]. There is theoretical inter-

est in the question of whether or not v2(pt) continues flat at higher pt or eventually goes down [50],

but the statistics of year-one data from STAR are not sufficient for addressing this question via a

four-particle cumulant analysis.

Figure 8.15 presents the pt-dependence of the correction factor for non-flow. Within errors,

the non-flow effect is seen to be about the same from zero through pt ∼ 4 GeV/c — a somewhat

surprising result, given the presumption that the processes responsible for non-flow are different at

low and high pt. Figure 8.16, which presents v2 from quarter-events divided by the conventional
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Figure 8.11: Reconstructed v2 versus pseudorapidity from the conventional method (circles), from
the 2nd-order cumulant method (triangles), and from the 4th-order cumulant method (stars), in eight
centrality bins. The upper left panel shows the most peripheral events, and the lower right the most
central.
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Figure 8.12: Reconstructed v2 versus pt from the conventional method (circles), from the 2nd-order
cumulant method (triangles), and from the 4th-order cumulant method (stars), in eight centrality
bins. The upper left panel shows the most peripheral events, and the lower right the most central.
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v2, both based on event planes constructed from particles with pt < 0.5 GeV/c, offers a useful

insight regarding the approximate pt-independence of non-flow. This ratio roughly characterizes

the contribution to non-flow from resonance decays and from other sources which primarily affect

v2 at lower pt, whereas non-flow from (mini)jets ought to be about equally present in the numerator

and the denominator of the ordinate in Fig. 8.16. A comparison of Figs. 8.15 and 8.16 accordingly

does not contradict the implicit assumption that different phenomena dominate non-flow in different

pt regions, and implies that the total resultant non-flow correction by coincidence happens to be

roughly the same throughout the pt range under study.
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Figure 8.13: Elliptic flow versus pseudorapidity from the conventional method (circles), from the
2nd-order cumulant method (triangles), from quarter-events (crosses), and from the 4th-order cu-
mulant method (stars), averaged over all centralities from bin 2 through 7, as defined in Figs. 8.11
and 8.12.

Following the approach of Section 8.2.2, the options of weighting each track by either unity or

pt have been compared in the 4th-order cumulant analysis. Fig. 8.17 demonstrates that the STAR

results are consistent in the two cases, and the pt weighting yields smaller statistical errors. All

STAR results presented in this dissertation are computed with pt weighting unless otherwise stated.
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Figure 8.14: Elliptic flow versus transverse momentum from the conventional method (circles),
from the 2nd-order cumulant method (triangles), from quarter-events (crosses), and from the 4th-
order cumulant method (stars), averaged over all centralities from bin 2 through 7, as defined in
Figs. 8.11 and 8.12.
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Figure 8.15: The ratio of v2 from the 4th-order cumulant divided by v2 from the conventional
method as a function of pt, averaged over all centralities from bin 2 through 7, as defined in
Figs. 8.11 and 8.12.
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Figure 8.16: The ratio of v2 from quarter-events divided by the conventional v2 as a function of pt.
In both cases, event planes were constructed from low pt (< 0.5 GeV/c) particles. The data are
averaged over all centralities from bin 2 through 7, as defined in Figs. 8.11 and 8.12.

8.4 Elliptic flow fluctuations

High precision results presented in this dissertation become sensitive to another effect usually

neglected in flow analysis, namely, event-by-event flow fluctuations. The latter can have two differ-

ent origins: “real” flow fluctuations — fluctuations at fixed impact parameter and fixed multiplicity

(see, for example [103]) — and impact parameter variations among events from the same centrality

bin in a case where flow does not fluctuate at fixed impact parameter. Note that these effects are in

principle present in any kind of analysis, including the “standard” one based on pair correlations.

The reason is that any flow measurements are based on correlations between particles, and these

very correlations are sensitive only to certain moments of the distribution in v2. In the pair corre-

lation approach with the reaction plane determined from the second harmonic, the correlations are

proportional to v2. After averaging over many events, one obtains 〈v2〉, which in general is not equal

to 〈v〉2. The 4-particle cumulant method involves the difference between 4-particle correlations and

(twice) the square of the 2-particle correlations. Everywhere in this chapter, we assume that this
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Figure 8.17: Measured v2 from 4th-order cumulants versus centrality with pt weighting (stars) and
unit weighting (circles).
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difference comes from correlations in the non-flow category. Note, however, that in principle this

difference (〈v4〉 − 〈v2〉2 6= 0) could be due to flow fluctuations. Let us consider an example where

the distribution in v is flat from v = 0 to v = vmax. Then, a simple calculation would lead to the

ratio of the flow values from the standard 2-particle correlation method and 4-particle cumulants as

large as 〈v2〉1/2/(2〈v2〉2 − 〈v4〉)1/4 = 51/4 ≈ 1.5.

In this study, we consider the possible bias in elliptic flow measurements under the influence

of impact parameter fluctuations within the studied centrality bins. The largest effect is expected

within the bin of highest multiplicity, where the impact parameter and v2 are both known a priori

to fluctuate down to zero in the limit of the most central collisions. These fluctuations lead to

bin-width-dependent bias in the extracted v2 measurements.

In section 8.3, two approximations were made in order to extract the final flow result,

〈v4
n〉 ' 〈v2

n〉2 and 〈v2
n〉 ' 〈vn〉2 .

Taking into account the fluctuation of vn,

〈v4
n〉 = σ2

v2n
+ 〈v2

n〉2 and 〈v2
n〉 = σ2

vn
+ 〈vn〉2 ,

and Eq. (8.19) becomes, after a few steps that are not shown,

−v4
n − 2σ2

vn
v2
n − σ4

vn
+ σ2

v2n
= −v4

meas , (8.26)

which is a function of vn and is solvable for vn, if σ2
vn

and σ2
v2n

are known. A method of calculating

both σ2
vn

and σ2
v2n

is now presented.

First, we need to parameterize vn as a function of impact parameter, b. Consider a polynomial

fit vn = a0 + a1b+ ...+ a6b
6, in which case the measured flow is 〈vn〉 = a0 + a1〈b〉+ ...+ a6〈b6〉.

The various averages 〈b〉, 〈b2〉,... 〈b12〉 can be estimated in each centrality bin from filtered HIJING

events. The parameters ai have been determined by minimizing χ2 in a fit to the eight v2(nch)

measurements. In addition, the fit is constrained to go through v2 = 0 at b = 0 and at b = 14.7

fm [105]. Fig. 8.18 shows the resulting curve:
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v2(b) = −0.000394 b + 0.0021 b2

−0.0000706 b3 − 0.0000320 b4 +

0.00000358 b5 − 1.174 × 10−7 b6. (8.27)

In principle, the final corrected v2(nch) should be determined iteratively, but the result is stable on

the first iteration.
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Figure 8.18: v2 as a function of impact parameter based on measured data, using HIJING to infer the
impact parameter. The triangles are the final 4th-order cumulant data after correction for fluctuations
as described in Section 8.4, while the circles show the 4th-order cumulant data before this correction.
The dashed lines represent the estimated uncertainty in the parametrization represented by the solid
curve.

Next we consider

σ2
vn

= 〈v2
n〉 − 〈vn〉2 =

(a2
0 + 2a0a1〈b〉 + ... a2

6〈b12〉) −

(a0 + a1〈b〉 + ... a6〈b6〉)2 , (8.28)

and again the various averages of powers of b can be estimated using HIJING.
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After computing σ2
vn

, σ2
v2n

, and obtaining vmeas from the four-particle correlation method, Eq. (8.26)

can be solved to extract the vn corrected for impact parameter fluctuations. The v2 bias is found to

be entirely negligible in all the studied centrality bins except for the most central, where the correc-

tion is about a factor of two (see the leftmost bin in Fig. 8.18). In the present analysis, even a factor

of two is not significant due to the large statistical error on v2 for maximum centrality. However,

the correction to v2 resulting from finite centrality bin width at maximum centrality has been deter-

mined with lower uncertainty than v2 itself, and will become quite important in future studies with

large samples of events.

Real event-by-event fluctuation in the flow coefficients would also make the four-particle values

lower than the two-particle values. At the moment, there is no way to calculate this effect, although

it is expected to be small.

Nch cross section b (fm) ε v2

5347
33 53 − 77% 12.23 ± 0.006 0.420 0.052 ± 0.012

14040
40 41 − 53% 10.36 ± 0.006 0.415 0.055 ± 0.003

22743
47 31 − 41% 9.06 ± 0.006 0.371 0.053 ± 0.001

31941
49 24 − 31% 7.91 ± 0.007 0.319 0.051 ± 0.001

41545
55 16 − 24% 6.80 ± 0.008 0.261 0.043 ± 0.001

51941
59 10 − 16% 5.56 ± 0.009 0.197 0.035 ± 0.002

62238
62 5 − 10% 4.26 ± 0.011 0.131 0.023 ± 0.002

746124
86 top 5% 2.53 ± 0.013 0.058 0.012 ± 0.015

Table 8.1: Tabulated values of observed charged particle multiplicity, centrality in terms of per-
cent of total geometric cross section, impact parameter inferred from HIJING, the initial spatial
anisotropy ε, and the final corrected elliptic flow based on 4th-order cumulants.

8.5 The centrality dependence of elliptic flow

The centrality dependence of elliptic flow is a good indicator of the degree of equilibration

reached in the reaction [71, 106]. Following Ref. [105], we compute the initial spatial eccentricity
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for a Woods-Saxon distribution with a wounded nucleon model [73] from

ε =
〈y2〉 − 〈x2〉
〈y2〉 + 〈x2〉

where x and y are coordinates in the plane perpendicular to the beam and x denotes the in-plane

direction. The ratio v2/ε is of interest because it has been argued to be independent of centrality in

a hydrodynamic model with constant speed of sound [4]. Hydrodynamics represents one possible

limiting case in describing nuclear collisions — the limit where the mean free path for interaction

of the constituents represented by the fluid cells is very small compared with the region of nuclear

overlap. The opposite limit, where the mean free path is long (or at least comparable to the dimen-

sions of the nuclear overlap region) is normally known as the Low Density Limit (LDL). In nuclear

transport models, the mean number of hard binary interactions per particle is typically small, and

the predictions of these models tend to be closer to the low density limit than the hydro limit. In

order to judge the proximity of measured flow data to either of these limits, it is useful to plot, as

in Fig. 8.19, v2/ε versus charged particle density in the form (dN/dy)/S, where dN/dy is rapidity

density, and the area of the overlap region is S = π
√

〈x2〉〈y2〉 as computed above. Since v2/ε is

proportional to (dN/dy)/S in the LDL case [74, 71], this form of plot offers meaningful insights

without reference to detailed theoretical models.

Figure 8.19 presents Au + Au data from AGS/E877 [107, 108], from NA49 [106], as well as the

current STAR measurements based on 4th-order cumulants, corrected for fluctuations as detailed

in Section 8.4. Alternative forms of the centrality dependence can readily be generated using the

tabulated quantities presented in Table 8.1. Generally, the current STAR results underline the need

for much increased statistics, particularly for the most central collisions. Within the uncertainties, a

smooth trend of increasing v2/ε with increasing centrality (larger (dN/dy)/S) is observed, without

the kink that has been suggested as a phase transition signature [72, 74]. It is noteworthy that

the v2/ε values reached in the most central RHIC collisions are consistent with the hydrodynamic

limit [4, 69, 75], whereas v2/ε in central collisions at AGS and SPS is significantly lower. It is
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Figure 8.19: v2/ε as a function of charged particle density in Au + Au collisions. Data are from
E877 at the AGS (squares), NA49 at the SPS (circles), and STAR at RHIC (stars). The STAR
measurements are at

√
sNN = 130 GeV, and correspond to the final corrected elliptic flow based on

4th-order cumulants, and we assume dN/dy = dN/dη. The horizontal shaded bands indicate the
hydrodynamic limits for different beam energies.
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also worthy of note that while the roughly linear relationship between v2/ε and (dN/dy)/S across

the presented beam energies and centralities is consistent with the LDL picture [74], the measured

v2(pt) (Fig. 8.14) cannot be explained by current LDL implementations [109], and is much closer

to hydrodynamic calculations up to 2 GeV/c [109].

Our theoretical understanding of the postulated QGP phase of matter remains in a state of flux,

and the search for experimental QGP signatures is an on-going effort at RHIC. No single observable

such as elliptic flow can provide an unambiguous answer to the main questions, and we must wait for

a stable set of measurements covering the full range of signals discussed in Chapter 2. Nevertheless,

it is possible to make some predictions about the likely role of the present elliptic flow measurements

in complementing the information now emerging from other analyses.

The agreement between hydrodynamic calculations and the integrated elliptic flow in central

collisions is consistent with early local thermal equilibrium, and the deviation observed in non-

central collisions indicates that the amount of particle rescattering at the larger impact parameters

is insufficient to justify the local thermal approximation implicit in hydrodynamical models. The

hydrodynamic-motivated blast-wave model [77, 110] suggests that elliptic flow is generated by the

combination of an azimuthal velocity variation and a spatially anisotropic freeze-out hypersurface,

and it successfully reproduced the mass dependence of v2 as a function of pt in the low pt re-

gion [90], as well as the invariant mT spectra for various particle species [111].

The origin of elliptic flow is the initial spatial anisotropy, which is clearly an elongation in the

out-of-plane direction. As the collision evolves, it is inferred that the source in momentum space

becomes extended in the in-plane direction at RHIC energies (see section 4.3 for details). Reaction-

plane-sensitive HBT, by taking account of elliptic flow, can measure the elliptic geometry of the

source in coordinate space at thermal freeze-out, and also provides information about the time scale

of the freeze-out. Preliminary studies [112] indicate an out-of-plane source, which is consistent

with a short lifetime of the fireball. The evolution of the elliptic geometry of the source can also
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be probed by comparing v2 from short-lived particles, like K∗ [113], to averaged v2 for all parti-

cles. Results also need to be reconciled with balance function analyses [114], which measure the

hadronization time scale based on the assumption that charge/anti-charge pairs become progres-

sively more separated in rapidity the longer the time during which they undergo rescattering after

production.

High pt studies [115, 116] show that spectra suppression at high pt is in qualitative agreement

with the predictions of energy loss by scattered partons traversing a dense medium, and the same

argument is supported by the angular correlation among high pt particles [117]. The density profile

of the medium can be inferred by comparing v2 at high pt to model calculations [50]. To draw mean-

ingful conclusions, accurate measurements of v2 at high pt are necessary. However, as discussed

in section 8.3.5, v2 at high pt suffers a significant non-flow contribution from jets, and thus a four-

particle flow analysis of the type presented in this dissertation, but with much increased statistics, is

of special importance.



Chapter 9

Summary and Outlook

Elliptic flow provides direct insight into the early stage of heavy ion collisions. With other

observables, elliptic flow builds the picture of the evolution of the hot dense matter created by the

collision. Elliptic flow is the subject of several proposed phase transition signatures, however, many

of those proposed signals are subtle effects, and it is thus important to measure the elliptic flow with

the least possible systematic uncertainty.

In this work, we provide details of the approach for treating non-flow correlations within the

framework of the standard elliptic flow analysis method based on particle pairs. We also compare

the standard method with a new and simpler pair analysis based on the scalar product of flow vectors.

The latter yields a 15 – 35% reduction in statistical errors, with the best improvement occuring in

the case of the most central and the most peripheral events.

It is concluded that four-particle correlation analyses can reliably separate flow and non-flow

correlation signals, and the latter account for about 15% of the observed second-harmonic azimuthal

correlation in year-one STAR data. The cumulant approach has demonstrated some advantages over

the previous alternatives for treating non-flow effects. In particular, 4th-order cumulants allows us

to present v2 measurements fully corrected for non-flow effects, in contrast to the earlier analyses

where the non-flow contribution was partly removed and partly quantified by the reported systematic

uncertainties. It is observed that non-flow correlations are present in
√
sNN = 130 GeV Au + Au

events throughout the studied region |η| < 1.3 and 0.1 < pt < 4.0 GeV/c, and are present at all

centralities. The largest contribution from non-flow correlations is found among the most peripheral

and the most central collisions.

On the other hand, a 4th-order cumulant analysis is subject to larger statistical errors than a

89
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conventional pair correlation analysis of the same data set. In the case of year-one data from STAR,

the intrinsic advantages of a higher-order analysis are somewhat offset by the increased statistical

errors, but in the case of future studies of larger numbers of events, a higher-order analysis will

provide a clear advantage.

Fluctuations within the studied multiplicity bins have the potential to bias elliptic flow results.

This bias has been estimated and found to be entirely negligible except for the most central mul-

tiplicity bin, where the correction is about a factor of two. In the present analysis, even this large

bias is only marginally significant, but again, this correction will presumably be quite important in

future studies with much improved statistics.

We present STAR data for v2/ε — elliptic flow in various centrality bins, divided by the initial

spatial eccentricity for those centralities. Mapping centrality onto a scale of charged particle density

enables us to study a broad range of this quantity, from peripheral AGS collisions, through SPS,

and ending with central RHIC collisions. Within errors, the STAR data follow a smooth trend and

show no evidence of predicted phase transition signatures. The three experiments at widely differing

beam energies show good agreement in v2/εwhere they overlap in their coverage of particle density.

The pattern of v2/ε being roughly proportional to particle density continues over the density range

explored at RHIC, which is consistent with a general category of models which approximate the low

density limit as opposed to the hydrodynamic limit. On the other hand, v2/ε at STAR is consistent

with having just reached the hydrodynamic limit for the most central collisions. The present data

contains no hint of the expected saturation of v2/ε at the hydrodynamic limit. It will be interesting

to repeat the study for
√
sNN = 200 GeV Au + Au events.

The agreement between hydrodynamic calculations and the integrated elliptic flow in central

collisions is consistent with early local thermal equilibrium, The same argument is supported by the

fact that the hydrodynamic-motivated blast-wave model successfully reproduced the mass depen-

dence of v2 as a function of pt in the low pt region, as well as the invariant mT spectra for various
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particle species. Reaction-plane-sensitive HBT measurements, by taking account of elliptic flow,

indicate a short lifetime of the fireball in non-central collisions, which is qualitatively consistent

with a delayed hadronization in central collisions suggested by balance function analyses. v2 at

high pt is sensitive to initial gluon density but it suffers a significant non-flow contribution from

jets, and thus a four-particle flow analysis of the type presented in this dissertation, but with much

increased statistics, is of special importance.

This experimental analysis is the first systematic study of elliptic flow based on four particle

correlations. The work presented in this dissertation, together with the information emerging from

other analyses, is now beginning to build the “big picture” that should soon provide a comprehensive

understanding of the exciting physics of heavy ion collisions at the high energy frontier.
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Appendix A

The Quark Model

The quark model describes nucleons and other hadrons as consisting of quarks. Baryons, of

which the nucleons are two examples, are made up of three quarks whereas mesons, such as pions,

consist of a quark and an anti-quark. All hadrons, particles which are affected by the strong force,

are thought to be combinations of three quarks, three anti-quarks or a quark with an anti-quark. The

hadron spectrum can be accounted for by six flavours of quarks, which are listed in table A.1 with

their quantum numbers. The two most massive quark flavours do not feature in heavy-ion collisions,

at the energies presently available, due to their high masses.

Quarks are created in quark-anti-quark pairs of the same flavour. Flavour is conserved in the

strong interaction but not in weak decays which occur on a much longer time-scale. Some mesons

and baryons with their quark content are shown in figures A.1 & A.2.

Even after taking into account the spin of the quarks it would appear that some hadronic states,

such as the ∆++, violate the Pauli exclusion principle. This resonance consists of three u quarks

and has a spin of 3
2 so all three quarks appear to be in identical quantum states. This leads to the

Symbol Name Mass Charge Quantum no.
u up 300 MeV + 2

3 I3 = +1
2

d down 300 MeV − 2
3 I3 = −1

2
s strange 500 MeV − 2

3 S=-1
c charm 1.2 GeV + 2

3 C=+1
b bottom 4.2 GeV − 2

3 B=-1
t top 170 GeV + 2

3 T=+1

Table A.1: The six quark flavours and their approximate constituent masses.
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introduction of a further quantum number which can take on three values for quarks (plus three op-

posite values for anti-quarks). This quantum number is labelled colour and the values have become

known as red, green and blue. Thus, in the ∆++ resonance the three u quarks each have a different

colour quantum number. The complete Standard Model also includes the leptons and the bosons

which mediate the forces. One of these is the gluon which is exchanged in the strong interaction just

as electromagnetic interactions exchange photons. However, unlike the photon, the gluon carries

the quanta of the force it is mediating. That is to say gluons have colour charge whereas photons do

not possess electromagnetic charge. This property means that the gluons can interact amongst them-

selves leading to qualitative differences between the strong and electromagnetic forces. There are in

fact an octet of gluons carrying the different combinations of the colour charge, r b̄, rḡ, bḡ, br̄, gb̄, gr̄

and the mixtures (rr̄ − gḡ)/
√

2, and (rr̄ + gḡ − 2bb̄)/
√

6. This scheme allows a quark of any

colour to interact with another by exchanging the appropriate gluon.



Appendix B

Kinematic Variables

In relativistic heavy ion collisions, it is convenient to use kinematic variables that are Lorentz

invariant or transform trivially under Lorentz boost.

Given the z axis as the direction of the beam, the pt (transverse momentum) is defined as:

pt =
√

px + py . (B.1)

pt is a Lorentz invariant variable since both px and py are unchanged under a Lorentz boost along z

axis.

For identified particles one usually employs the transverse mass

mt =
√

pt2 +m2 , (B.2)

where m is the mass of the particle. The transverse energy of the particle is given by mt −m.

In place of longitudinal momenta, it is normal to use the rapidity, defined as

y =
1

2
ln

(

E + pz
E − pz

)

(B.3)

= ln

(

E + pz
mt

)

(B.4)

= tanh−1
(pz
E

)

, (B.5)

where E and pz are the energy and longitudinal momentum of the particle, respectively.

Under a Lorentz transformation from a reference system S to a system S ′ moving with velocity

βz with respect to S in the longitudinal direction, the rapidity y ′ in the S′ frame is related to y in the

S frame only by an additive constant: y ′ = y − yβ, where yβ is the rapidity of the moving frame.
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yβ =
1

2
ln

(

1 + βz
1 − βz

)

. (B.6)

The additive property of rapidity guarantees that the shape of the corresponding distribution is

unchanged under Lorentz boost.

In the limit of p� m and pz/p� 1/γ, the rapidity reduces to to be

y =
1

2
ln

(

E + pz
E − pz

)

≈ 1

2
ln

( |~p| + pz
|~p| − pz

)

= ln

(

√

1 + cos θ

1 − cos θ

)

= − ln (tan θ/2) ≡ η.

(B.7)

where η is called pseudorapidity. Note that pseudorapidity, unlike rapidity, can be computed without

knowing the mass of the particle.



Appendix C

Practical Guide to Cumulant Method in Flow Analysis

In this appendix, the cumulant method for anisotropic flow analysis will be described. The

practical usage will be addressed, thus most equations will be presented without derivation. To see

the derivation, refer to[89].

C.1 Integrated flow

We began with the construction of the real-valued generating function

Gn(z) =
∏

j=1

(

1 +
wj
M

(z∗einφj + ze−inφj )
)

=
∏

j=1

(

1 +
wj
M

(2x cos(nφj) + 2 y sin(nφj))
)

, (C.1)

where z∗ ≡ x− iy denotes the complex conjugate. This generating function can then be averaged

over events with the same multiplicity M . In practice, the variable z corresponds to interpolation

points used to estimate the various quantities encountered in the analysis, and its usage will be clear

shortly.

In order to obtain the cumulants, one first averages Gn(z) over events, which yields an average

generating function 〈Gn(z)〉. Then the cumulant Cn(z) is defined as

Cn(z) ≡M
(

〈Gn(z)〉1/M − 1
)

. (C.2)

The cumulant of 2k-particle correlations Cn(2k) is the coefficient of z∗kzl/(k!)2 in the power-

series expansion of Cn(z). To construct the first three cumulants, one may truncate the series to

order |z6| and compute Cn(z) at the following interpolation points:
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zp,q ≡ xp,q + iyp,q, xp,q ≡ r0
√
p cos

(

2 q π

qmax

)

, yp,q ≡ r0
√
p sin

(

2 q π

qmax

)

.

(C.3)

for p = 1, 2, 3 and q = 0, · · · , qmax − 1, where qmax ≥ 8. The parameter r0 must be chosen as a

compromise between errors due to higher order terms in the power-series expansion, which rapidly

increase with r0, and numerical errors. For the flow analysis in this dissertation, 1.5 is used for r0.

Once the values Cn(zp,q) have been computed, they must be averaged over the phase of z:

Cp ≡
1

qmax

qmax−1
∑

q=0

Cnzp,q, p = 1, 2, 3. (C.4)

The cumulants from 2, 4, and 6 particle correlation are then given respectively by

cn{2} =
1

r20

(

3C1 −
3

2
C2 +

1

3
C3

)

,

cn{4} =
2

r40
(−5C1 + 4C2 − C3) ,

cn{6} =
6

r60
(3C1 − 3C2 + C3) . (C.5)

Then the weighted integrated flow (defined as Vn ≡ 〈wein(φ−ΦR)〉) relates to the cumulants by:

Vn{2}2 = cn{2}, Vn{4}4 = −cn{4}, Vn{6}6 = cn{6}/4. (C.6)

C.2 Differential flow

The differential flow is the flow from a sub-ensemble of a total ensemble. It could be flow from

particles within a pt and η window, or flow from a specific particle type. For the sake of simplicity,

let’s say those particles for differential flow study are protons with azimuthal angle denoted by ψ,

while particles used for studying integrated flow are pions (with azimuthal angle denoted by φ).
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We are able to measure flow via particle correlation because 〈ein(ψi−φj)〉 is a non-zero value,

where n is the harmonic. This condition can be rewritten as 〈ein(mψi−φ1−φ2−...−φm)〉

6= 0, which means we correlate m pions with harmonic n to get the flow of protons with harmonic

m× n. For example, we can measure v2 from proton by

v2 = 〈ei(2ψ−φi−φj)〉 , (C.7)

which is based on three-particle correlation (2 pions and 1 proton) and mixed harmonics (first har-

monic for pions, second harmonic for protons).

In order to take such cases into account, an indexm is introduced in the subscripts for differential

flow. For instance, vmn/n means differential flow from correlating one proton with harmonic m×

n with m pions with harmonic n. Then we have two ways to get v2 from protons: one way is

(v2/2{3}), where we correlate one proton with one pion, both in the second harmonic, and the

other way is (v2/1{3}), where we correlate one second harmonic proton with two pions in the first

harmonic.

The cumulant for differential flow is given by

Dmn/n(z) ≡
〈eimnψGn(z)〉

〈Gn(z)〉
, (C.8)

where the numerator is evaluated over all protons, and the denominator is averaged over all events

(it can be obtained from the calculation of integrated flow). If the proton was used in the calculation

of the generating function Eq. C.1, one should divide Gn(z) by 1 + wj(z
∗einψ + ze−inψ)/M ,

where ψ is the proton azimuthal angle, to avoid autocorrelations.

To extract the cumulants, one computes the product z∗mDmn/n(z) at the points zp,q, Eq. C.3;

one then takes the real part, and averages over angles:
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Dp ≡
(

r0
√
p
)m

qmax

qmax−1
∑

q=0

[

cos

(

m
2 q π

qmax

)

Xp,q + sin

(

m
2 q π

qmax

)

Yp,q

]

, (C.9)

with p = 1, 2, 3 and Xp,q + iYp,q ≡ Dmn/m(zp,q).

For m = 1 (no harmonic mixed), the lowest order cumulants are given by

dn/n{2} =
1

r20

(

2D1 −
1

2
D2

)

,

dn/n{4} =
1

r40
(−2D1 +D2) , (C.10)

while for m = 2 (mixed harmonic),

d2n/n{3} =
1

r40

(

4D1 −
1

2
D2

)

,

d2n/n{5} =
1

r60

(

−6D1 +
3

2
D2

)

. (C.11)

These cumulants must then be related to the differential flow. For a perfect detector,

vn/n{2} = dn/n{2}/Vn, vn/n{4} = −dn/n{4}/Vn3 , (C.12)

v2n/n{3} = d2n/n{3}/Vn2, v2n/n{5} = −d2n/n{5}/(2Vn4) . (C.13)



Appendix D

Author’s Contributions to Collaborative Research

In addition to the physics analysis work described in this dissertation, I have completed a number

of “community service” tasks within the STAR collaboration, i.e., tasks that are of benefit to part or

all of the entire collaboration and were not a necessary step in carrying out my own physics analysis.

I have participated in the installation and testing of the High Voltage supply system for the anode

wires of the STAR TPC. During STAR testing in 1999, and data-taking in 2000 and 2001, I manned

many additional shifts in the STAR control room beyond the normal allocation expected from each

collaborator.

In the area of community service software, I have studied the details of charged particle energy

loss (dE/dx) in the TPC, including various systematic effects arising from imperfections in the

dE/dx response of the TPC. These studies led to optimum calibration of the dE/dx signal, and

improved the dE/dx resolution by 13% relative to the case where the imperfections were neglected.

This improved resolution directly leads to improved particle identification (PID) in the TPC, and the

same amount of improvement by a hardware approach could easily cost on the order of $1 million.

This dE/dx study is summarized in Chapter 6 of the dissertation. I also developed a software tool

for extracting the maximum possible PID information from the dE/dx signal, and this tool is widely

adopted in various physics analyses in STAR.

I participated in the analysis of elliptic flow for the three most abundant species of identifed

charged particles (pions, kaons and protons) and I am one of the principal authors of a paper on

this topic, which has been published in Physical Review Letters [90] (this is the most prestigious

journal of the American Physical Society, and publishes important findings from across the entire

field of physics). More recently, I have carried out a systematic elliptic flow study using four-particle
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correlations — the main topic of this dissertation. The same analysis procedure will be followed

in future flow analyses in the STAR experiment, because the only significant disadvantage of this

approach is its larger statistical errors, and this is not likely to be of concern in the future because

the number of events will be very large. Other heavy-ion experiments will benefit from this work

as well. A long paper based on the main content of this dissertation is now approaching the final

stage of internal review within the STAR collaboration, and it will soon be submitted for journal

publication.

I have presented invited talks on this work at two major conferences — the International Nuclear

Physics Conference (INPC 2001) in Berkeley, CA (June 2001), and at the 2001 annual meeting of

the American Chemical Society in Chicago (August 2001). I am the sole explicit author of the

written proceedings of INPC 2001 [118].

My list of publications can be found in Appendis E. STAR policy, following the normal practice

of large collaborations in High Energy and Nuclear Physics, lists all authors on refereed publications

strictly in alphabetical order. I am among the principal authors for papers marked with “*”.
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K.H. Ackermann et al. (STAR Collaboration) Phys. Rev. Lett. 86, 402 (2001)
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C. Adler et al. (STAR Collaboration) Phys. Rev. Lett. 86, 4778 (2001)
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√
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√
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√
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• Mid-rapidity phi production in Au+Au collisions at
√
sNN = 130 GeV,

C. Adler et al. (STAR Collaboration) accepted by Phys. Rev. C.

• Antideuteron and Antihelium production in Au+Au collisions at
√
sNN = 130 GeV,

C. Adler et al. (STAR Collaboration) Phys. Rev. Lett. 87,262301-1 (2001)

• Measurement of inclusive antiprotons from Au+Au collisions at
√
sNN = 130 GeV,

C. Adler et al. (STAR Collaboration) Phys. Rev. Lett. 87,262302-1 (2001)
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• Mid-rapidity Lambda and Lambda bar Production in Au + Au Collisions at
√
sNN =

130 GeV,

C. Adler et al. (STAR Collaboration) to be submitted to Phys. Rev. Lett.

• ∗Elliptic flow from two- and four- particle correlations in Au + Au Collisions at
√
sNN =

130 GeV,

C. Adler et al. (STAR Collaboration) to be submitted to Phys. Rev. C.
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