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The nature of the out-of-plane dissipation was investigated in underdoped Y0.54Pr0.46Ba2Cu3O7−� single
crystals at temperatures close to the critical temperature. For this goal, temperature- and angle-dependent
out-of-plane resistivity measurements were carried out both below and above the critical temperature. We
found that the Ambegaokar-Halperin relationship �V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22,
1364 �1969�� depicts very well the angular magnetoresistivity in the investigated range of field and tempera-
ture. The main finding is that the in-plane phase fluctuations decouple the layers above the critical temperature
and the charge transport is governed only by the quasiparticles. We also have calculated the interlayer Joseph-
son critical current density, which was found to be much smaller than the one predicted by the theory of
layered superconductors. This discrepancy could be a result of the d-wave symmetry of the order parameter
and/or of the non-BCS temperature dependence of the c-axis penetration length.
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Since the discovery of high temperature superconductivity
in cuprates, the contrasting temperature �T� dependence of
in-plane �ab and out-of-plane �c resistivities has been an is-
sue of debate. This topic is even more complex in the under-
doped systems where the density of states �DOS� of quasi-
particles as well as the transfer integrals are momentum and
temperature dependent. Additionally, strong fluctuations,
which are expected at low carrier density, have a major con-
tribution to dissipation.

The most debated issue is the interlayer dissipation and its
field and angle dependence. In the most general way, the
c-axis conductivity is presumably controlled by the tunneling
of the Cooper pairs and quasiparticles, with conductivities �J
and �c,qp, respectively; i.e., the c-axis conductivity �c=�J
+�c,qp. This tunneling is the main consequence of the layered
structure of the cuprates, which can be depicted as stacks of
Josephson junctions made out of superconducting CuO2
“electrodes” and intermediate blocking layers. Actually,
this Josephson coupling of the layers distinguishes the lay-
ered cuprates from the ordinary anisotropic superconductors.
The existence of this coupling was unambiguously demon-
strated for cuprates with large anisotropy ��100, where �
is the ratio of the c-axis and in-plane effective masses, �
�mc /mab, either directly by I-V characteristics on small
single crystals or messa structures1–6 or by Josephson plasma
resonance experiments.7–12 In the case of systems with lower
anisotropy, e.g., YBa2Cu3O7−� ���5–9�, the existence of
a Josephson coupling in the c-axis direction was largely
debated. Direct measurements were reported only in under-
doped YBa2Cu3O6+x,

13 while optical conductivity measure-
ments14,15 showed evidence of Josephson coupling in these
low anisotropic cuprates.

As in the case of the in-plane transport, the interlayer
dissipation is strongly influenced by phase fluctuations. A
magnetic field applied perpendicular to the layers penetrates
as pancake vortices with a particular phase distribution

around each core. It is known that position fluctuations of the
pancake vortices due to pinning and/or thermal diffusion of
the vortex core, reduce phase correlations, hence, the Joseph-
son coupling. Nevertheless, as long as phase correlations ex-
ist, they could provide a Josephson-type contribution to the
out-of-plane transport. In fact, such phase correlations,
though weak, were identified experimentally even in the liq-
uid state of the vortex system.8,16,17 Generally, these phase
�vortex� fluctuations have important consequences both be-
low and above the critical temperature Tc0. For T�Tc0, they
drive the vortex system into a liquid state, whereas above
Tc0, they allow vorticity to survive and to contribute to the
in-plane dissipation.18,19 To be specific, in the latter case,
there is a crossover in the in-plane dissipation from a regime
of pure flux flow to a regime entirely due to quasiparticles,
which occurs at a particular temperature higher than Tc0. The
importance of the fluctuations increases when the density of
charge carriers is reduced, i.e., in the case of underdoped
cuprates.

Even though the interlayer coupling was investigated on a
large extent in large-� superconductors, the scarcity of data
is evident in low and medium anisotropic superconductors.
Therefore, in the present study, using temperature, field, and
angle dependence of the out-of-plane resistivity, we investi-
gate the features of the c-axis dissipation in a medium �
superconductor in an attempt to find the extent of Josephson
response close to Tc0, i.e., in a temperature range where the
phase fluctuations are important enough to reduce and/or
suppress the Josephson coupling. As in the case of in-plane
resistivity,18,19 we take advantage of the different angular de-
pendences of the different contributions to resistivity to ob-
tain the desired information. This investigation is performed
on Y0.54Pr0.46Ba2Cu3O7−� single crystals, where we used the
antidoping effect of praseodymium to reduce the charge car-
rier density and increase the electronic anisotropy, hence, to
drive the system in the strong fluctuation regime. In this way
the electromagnetic and Josephson coupling of the pancake
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vortices and, subsequently, the interlayer coherence are
weakened compared with the thermal fluctuations. Our main
finding is that the c-axis dissipation scales with H cos � be-
low Tc0, in a temperature range that ends at the critical tem-
perature. We relate the failing of the scaling above Tc0 to the
suppression of the interlayer Josephson coupling by the in-
plane phase fluctuations. So, even though in-plane strong
superconducting fluctuations, hence, a large amount of con-
densate, persist above Tc0,18,19 there is no out-of-plane Jo-
sephson coupling which would provide an enhanced conduc-
tivity above Tc0.

Y0.54Pr0.46Ba2Cu3O7−� single crystals with typical dimen-
sions of 1.0	0.5	0.02 mm3 were grown using a standard
procedure described elsewhere.20 The dimensions the the
crystal for which the data are shown here are 0.6	0.65
	0.017 mm3. We attached four gold wires �0.025 mm in
diameter� with silver epoxy onto each of the two large faces
of the single crystal �see top inset to Fig. 1�. The two outer
�inner� contacts on the same face were used as current �volt-
age� terminals. The contact resistance is 2 
 at room tem-
perature. First, a magnetic field H up to 14 T was applied
along the c direction of the sample, a constant current I
�1 mA was fed through pads of size 0.05	0.5 mm2, alter-
nately on both faces, and the voltage on each face of the
single crystal was measured at set temperatures between 0
and 300 K. Next, we measured in the same way the voltages
at different constant temperatures but this time the single
crystal was rotated in the applied magnetic field with the
angle � between H and the c axis varying between 0 and
360°. The out-of-plane �c and in-plane �ab resistivities were
calculated using an algorithm described elsewhere.21 The
critical temperature Tc0 was taken at the midpoint of the
normal-superconductor transition.

Figure 1 shows the temperature T dependence of �c of an

Y0.54Pr0.46Ba2Cu3O7−� single crystal measured at different
applied magnetic fields, while its bottom inset shows the
zero-field �c�T� over the whole measured temperature range.
Even though this is a strongly underdoped sample, with a
zero-field superconducting transition temperature Tc0=38 K,
it has a sharp transition, attesting to the good quality of this
single crystal. The magnetoresistivity in the normal state is
very small and positive. The normal state is metallic at high
temperatures and becomes nonmetallic for temperatures
lower than 133 K. The upturn in �c�T� observed below this
temperature is the result of a complex process. First, there is
a reduction in the planar density of states DOS due to the
opening of the pseudogap at k= �� /2a ,0� �nodes� with de-
creasing T;22 second, the transfer integral of the coherent
contribution is angle dependent with maxima at the nodal
points.

The angular dependence of the normalized c-axis resistiv-
ity �c��� /�c��=0° � of Y0.54Pr0.46Ba2Cu3O7−� measured at
30, 35, and 40 K in a magnetic field of 14 T is shown in Fig.
2. Both below and above Tc0, �c��� displays a minimum at
�=90° �i.e., for H �ab plane� and a maximum value at �
=0° �i.e., for H �c axis�. The former �latter� value of the
angle corresponds to maximum �zero� transverse Lorentz
force on the flux vortices. This fact rules out the possibility
that flux motion contributes to the measured c-axis dissipa-
tion, since the measured dissipation is maximum for angles
for which the Lorentz force is zero. Therefore, we assume
that the c-axis transport in the mixed state involves Joseph-
son and quasiparticle contributions which depend on T, H,
and �.

In the geometry we have used, the c-axis component of
the current density flows mainly along the crystal edges in a
wall of width almost equal to the pad width 
=50 �m.
We call this region the active area. The variation of the
current density over this width is �Jz�z ,L /2�−Jz�z ,L /2

FIG. 1. �Color online� Temperature �T� dependence of out-of-
plane resistivity �c of an Y0.54Pr0.46Ba2Cu3O7−� single crystal, mea-
sured in an applied magnetic field of 0, 6, 8, 10, 12, and 14 T and
for T�80 K. Insets: �top� Sketch of sample geometry and lead
configuration; �bottom� zero-field �c�T� shown over the whole mea-
sured T range. The solid lines are guides to the eye.

FIG. 2. �Color online� Angular � dependence of normalized out-
of-plane resistivity ���� /��0� of an Y0.54Pr0.46Ba2Cu3O7−� single
crystal, measured at 30, 35, and 40 K and 14 T.
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−
�� /Jz�z ,L /2��14%, while, outside of this width, the cur-
rent density decreases fast toward the center of the crystal.
Therefore, we conclude that only these edge walls of the
single crystal are involved in the current transport along the
c axis.

The characteristic lengths for a stack of Josephson junc-
tions are the Josephson penetration length � j, which accounts
for the field penetration within the nonsuperconducting inter-
layer space and the c-axis London penetration length �c,
which accounts for the magnetic screening. For this single
crystal, � j �0.03 �m, much smaller than 
. Therefore, it is
inappropriate to consider the single crystal as a stack of short
junctions. For a stack of long junctions, Josephson vortices
might be generated even in the absence of in-plane external
fields if the in-plane currents are strong enough to create the
required phase gradient. This phase gradient is generated if
the junction length is larger than �c. Hence, if the width of
the active area 
 is of the order of the c-axis magnetic pen-
etration length �c one can assume that the in-plane currents
are too small to generate Josephson vortices in the active
area. There are no available data concerning �c for strongly
underdoped Y1−xPrxBa2Cu3O7−�. An estimate of �c based on
a similar underdoped YBa2Cu3Ox is of the order of 30 �m.23

Therefore, this Josephson system satisfies the condition � j
�
��c. Hence, we assume that in this case the Josephson
vortices are most likely absent and we can use the
Ambegaokar-Halperin relationship. Additionally, the current
we use is very low with a total current density J
=4 A cm−2�Jc. Under these assumptions, we proceed to ob-
tain an analytical relationship for the c-axis resistivity as a
function of field, temperature, and angle.

Generally, the total conductivity can be derived from Ku-
bo’s relationship for both Josephson and quasiparticle
current.24 However, this relationship is difficult to handle in
the absence of an analytical dependence of the in-plane dif-
fusion coefficient on field and temperature. Several experi-
mental reports25–28 have shown that the Ambegaokar-
Halperin �AH� expression,29 which is valid for a single
Josephson junction, can be successfully used to fit the c-axis
resistivity data when making specific assumptions on the ex-
pression of the critical current. The Ambegaokar-Halperin
expression for c-axis resistivity is given by

�c�T� = �n	I0
�0Ic�T�
2�kBT

��−2

, �1�

where �n is the intrinsic normal-state resistivity of the junc-
tion, I0 is the modified Bessel function, �0 is the flux quan-
tum, Ic is the critical current at a temperature T, and kB is
Boltzmann’s constant. Note that the AH relationship ac-
counts also for the contribution of the quasiparticles through
�n.

Because of the high energy of the Josephson coupling
�0Ic /2� relative to the thermal energy, one can use the
asymptotic expansion I0�x��exp�x� /
2�x for x�1. This
approximation gives, for example, for x=3 a 5% error com-
pared with the exact Bessel function. An estimate of the
zero-field conductivity of our samples gives x�B=0�=5.5 at
35 K and an error of approximately 2%. With this approxi-

mation, Eq. �1� gives the the following expression for the
c-axis resistivity at high temperatures:

�c�T,H� � �c,qp
�0Ic�T,H�

kBT
exp
−

�0Ic�T,H�
�kBT

� . �2�

Next, we discuss the T and H dependence of Ic. The tem-
perature dependence of the AH relationship is limited only to
the spin-wave-type fluctuation of the order parameter. There-
fore, we have to include in the above critical current term the
contribution accounting for the presence of vortices. The
maximum Josephson current Ic, which is related to the inter-
layer phase difference, is strongly influenced by the level of
the fluctuations of the phases in each layer. To be specific,
the Josephson current density Jc decreases as a result of both
the thermally induced misalignment of the planar vortices,
which creates a gauge-invariant phase difference �n,n+1 from
layer to layer, and the thermally induced phase slippage
�spin-wave-type phase fluctuations�. Regarding the thermal
motion of the pancake vortices, there is a complex process of
renormalization of Jc, which suppresses Jc.

30 A suppressed Jc
increases in turn the penetration depth �c and hence reduces
the elastic constants, which in turn further suppresses Jc.
This process is present both in the solid and liquid phases of
the vortex system because the only difference between these
two phases is the vanishing of the shear constant c66 in the
latter phase. Additionally, the phase difference depends on
the pancake position within each plane. Therefore, to obtain
the interlayer critical current, one has to go beyond the en-
semble average31,32 and to also use a space average of the
critical current. Hence,33,34

Ic
2 = Jc0

2 � dr1� dr2 exp�i��n,n+1�r1� − �n,n+1�r2��� , �3�

with Jc0 the local intrinsic �bare� Josephson critical current
density. At high temperatures, Eq. �3� becomes

Ic
2�T,H� = Jc0

2 �T�AS�H� ,

where A is the area of the junction and S�H�, given by

S�H� =� dr�cos��n,n+1�r�� − cos��n,n+1�0��� , �4�

is the correlation area, which needs to be evaluated. Follow-
ing Koshelev, Bulaevski, and Maley,31 we make the approxi-
mation

S�H� � f�2s2�Hj/Hz��. �5�

Here, f�H ,T� is a function of order unity with a weak T
dependence, s is the interlayer spacing, Hj =�0 /�2s2 is a
characteristic field, and Hz=H cos � is the magnetic field in
the c-axis direction. The deviation of the exponent �=1
−kBT /2�E0�T� from unity is a result of the spin-wave-type
phase fluctuations and increases strongly close to the critical
temperature. �E0=s�0

2 / �4��0�ab
2 � is the Josephson energy of

the area �2s2.35� The above approximation �Eq. �5�� is valid
for applied magnetic fields larger than the characteristic field
Hj. For the single crystals with a Pr doping x=0.46, for
which �=26 and s=11.7 Å, the characteristic field Hj
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�2.3 T. Hence, Eq. �5� is valid for H�2.3 T. With this
approximation, the Josephson critical current becomes

Ic�H,T� = Jc0�T��sf1/2A1/2�Hj/Hz��/2. �6�

Equation �4�, and hence Eq. �6�, was derived in the approxi-
mation of a completely decoupled pancake vortex liquid,
when the correlation of the cos �n,n+1 terms drops on a length
scale of the order of the intervortex spacing.

Equations �2� and �6� give the following expression for
the out-of-plane resistivity:

�c�T,H,�� � �c,qp
�0Jc0�T��sf1/2A1/2

kBT

 Hj

H�cos ���
�

	 exp	−
�0Jc0�T��sf1/2A1/2

�kBT

 Hj

H�cos ���
�� ,

�7�

with �=� /2. An important result of Eq. �7� is that the out-
of-plane resistivity in the mixed state where Josephson tun-
neling dominates the conduction should scale with H cos �.
Figure 3�a� is a plot of �c vs H cos �, measured at several
temperatures below Tc0 and in applied magnetic fields of 6,

8, 10, 12, and 14 T. Note that the data, indeed, follow the
H cos � scaling.

Above the critical temperature, �c vs H cos � plots no
longer map onto a single curve �see inset to Fig. 3�a� for T
=40 K�. This fact hints at the complete vanishing of the in-
terplane phase correlations, and hence of the Josephson con-
tribution to dissipation above Tc0. Thus, the phase fluctua-
tions suppress the mechanism responsible for bulk
superconductivity at the critical temperature, even though the
in-plane dissipative processes still carry the hallmark of su-
perconducting phase fluctuations up to temperatures well
above Tc0.18,19

The term �c,qp in Eq. �7� ensues from the quasiparticle
current driven by the time variation of the gauge-invariant
phase difference. In the case of d-wave superconductors, the
quasiparticle concentration does not vanish with decreasing
temperature. At any temperature T, there is always a k range
so that 
�k��kBT, which facilitates the quasiparticle excita-
tion near the gap nodes. Microscopic models have shown
that in the case of constant DOS, the quasiparticle out-of-
plane resistivity below the critical temperature depends on
temperature as �c,qp=�n�3
0

2 /�T2� if the tunneling is coher-
ent and is T independent if the tunneling is completely
incoherent.36 A real material displays both contributions;
hence, it follows a power law temperature dependence. Ad-
ditionally, the DOS decreases with decreasing T in under-
doped cuprates. The absence of an analytical expression for
the temperature dependence of the DOS makes impossible
the determination of the temperature dependence of the qua-
siparticle contribution to resistivity. In the presence of a mag-
netic field, there is a small change in conductivity due to the
Doppler shift in the quasiparticle spectrum.37 However, a
sensitive change requires extremely high magnetic fields,38

so that in the present measurements �H�14 T� �c,qp is prac-
tically field independent. Indeed, the c-axis resistivity data
show that the normal-state magnetoresistivity is very small,
which implies an almost H-independent quasiparticle contri-
bution to the out-of-plane conduction. Therefore, we assume
that �c�T� measured in 14 T in the normal state and its ex-
trapolation at lower temperatures in the mixed state is the
out-of-plane quasiparticle resistivity �c,qp�T�.

With �c,qp�T� determined as just discussed above, we fit-
ted the �c�T ,H ,�� data with Eq. �7� with two fitting param-
eters: the exponent ��T� and

C�T� =
�0Jc0�T��sA1/2Hj

��T�

�kBT
,

where we take f �1. The results of the fitting of the data
measured at several temperatures, and in 14 and 10 T are
shown in Fig. 3�b� and its inset, respectively. The excellent
fit of the out-of-plane resistivity data with Eq. �7� confirms
the validity of our approach and shows that the T, H, and �
dependence of the measured out-of-plane resistivity in the
mixed state is dominated by the Josephson tunneling of the
Cooper pairs and the quasiparticle tunneling.

The picture that immerges from these results is as follows.
As in the case of the in-plane dissipation, the fluctuations
have a significant effect on the nature of �c at high tempera-

FIG. 3. �Color online� �a� Plot of the out-of-plane resistivity �c

vs H�cos �� of an Y0.54Pr0.46Ba2Cu3O7−� single crystal, measured at
25, 30, 35, and 36 K and 6 T �open circles�, 8 T �diamonds�, 10 T
�triangles�, 12 T �inverted triangles�, and 14 T �open squares�. In-
set: Plot of �c�H�cos ��� measured at 40 K. �b� and its inset: Same
plot of the data measured at 14 and 10 T, respectively. The solid
lines are fits of the data with Eq. �7�.
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tures in low charge carrier density cuprates such as
Y0.54Pr0.46Ba2Cu3O7−�. Nevertheless, although the dissipa-
tions along the two directions have the same origin, they are
governed by different mechanisms, hence, display two tem-
perature scales. The out-of-plane dissipation is governed by
the Josephson tunneling of the Cooper pairs and the quasi-
particle tunneling. With increasing T, the in-plane phase fluc-
tuations give rise to a rapid suppression of the Josephson
coupling, the unique process which makes superconductivity
a bulk phenomenon, and of the corresponding interlayer su-
percurrent density. Small interlayer correlations survive
above the irreversibility temperature up to 37 K above which
both the Josephson coupling and the corresponding interlayer
supercurrent vanish. At T�Tc0, even though in-plane vortic-
ity has been shown to exist in a strongly fluctuating regime,18

these phase fluctuations are too fast to allow any phase cor-
relation along the c axis. Hence, �J=0 and the out-of-plane
conductivity is only a result of quasiparticle tunneling. This
is not the case of the in-plane dissipation, which displays a
contribution from phase fluctuations �pancake vortices� aris-
ing from their motion driven by the transport current up to a
charge-carrier-density-dependent temperature T��Tc0.18,19

Therefore, the temperature scale is Tc0 �T�� for the contribu-
tion of the superconducting dissipation to the total out-of-
plane �in-plane� resistivity. These two temperatures merge as
the density of charge carriers increases toward the optimal
doping.

Additional improvements to the model used in this study
would require the incorporation of nonequilibrium effects
due to the nodal quasiparticles, mainly in the high tempera-
ture range.39 This simple AH approach, which constitutes the
starting point of our analysis, though fruitful, has been the
subject of criticisms regarding the omission of the interaction
between adjacent junctions,40 and the assumption of a Fermi
liquid behavior in underdoped cuprates. However, the sim-
plicity of the AH relationship and its reported success at low
temperatures make it attractive, with appropriate assump-
tions, in the high temperature regime. Our present results
confirm, indeed, its applicability close to Tc0.

From the angular magnetoresistivity data, we also ex-
tracted the temperature dependence of the bare interlayer �Jo-
sephson� critical current density at high temperatures, close
to Tc0, from

Jc0�T� =
�kBTC�T�

�0�sA1/2Hj
��T� , �8�

using the fitting parameter C�T� as obtained from the fit of
the angular magnetoresistivity data at high temperatures with
Eq. �7�. A plot of Jc0 vs T is shown in Fig. 4. These values of
Jc0 are smaller than the values predicted by a simple model
of layered superconductors, which gives Jc0
=�0 / �2��0�c

2�T��. The temperature dependence of the data
follow the power law Jc0�T��7.6�T /Tc0�−1.73. Such a T de-
pendence could be the result of the complexity of the inter-
layer Cooper pair transport in cuprates containing conducting
CuO chains combined with the d-wave symmetry of the su-
perconducting order parameter. Therefore, the temperature
dependence of Jc0 is provided not only by �c

−2�T�, but also by

the T dependence of the density of states of the localized
resonant centers.41 The �c

−2�T� itself changes its convexity at
high temperatures,23 most probably due to the excitation of
the quasiparticles out of the condensate at gap nodes.

The temperature dependence of the exponent � is shown
in the inset to Fig. 4. A fit of the data gives a linear T depen-
dence, i.e., ��T�=1.7�1−T /T*�, where T*=39.5 K is slightly
higher than Tc0 defined as the midpoint of the transition
curve. Theoretically, the exponent � should be linear in
T�ab

2 �T�. A plot of the theoretical ��T� curve using the BCS
dependence of �ab

2 �T� is also shown in Fig. 4. The experi-
mental and theoretical values are close to each other for T
�30 K. At lower temperatures, the data obtained from fitting
are almost twice as high as the theoretical values. Actually,
the expression used for the field dependence of Ic �Eq. �6�� is
not valid at low temperatures. This could be one reason for
the above discrepancy. It is interesting to note, however, that
the scaling of �c�H�cos ��� still works down to 20 K. Another
reason for the discrepancy between the experimental and the-
oretical values of � could be that �ab

−2�T� has a non-BCS
temperature dependence due to the nodal quasiparticles.

In summary, we analyzed the out-of-plane dissipation in a
medium anisotropic underdoped cuprate at temperatures
around Tc0. We performed these measurements in order to
investigate the origin of the large �c and its T, H, and angle
dependence in this material. The data are well fitted by the
Ambegaokar-Halperin expression for temperatures up to the
critical temperature and applied magnetic fields as high as
14 T. We found that the interlayer resistivity follows a
simple scaling law as a function of magnetic field and angle,
i.e., �c�H ,��=�c��H cos ���. The existence of the scaling

FIG. 4. �Color online� Josephson critical current density Jc0,
calculated with the fitting parameters obtained by fitting the angular
magnetoresistivity, vs reduced temperature T /Tc0. The solid line is a
power law fit. Inset: Temperature T dependence of exponent �
�empty circles� obtained by fitting the magnetoresistivity data. The
theoretical ��T� dependence is calculated with the T dependence of
the penetration depth �ab�T� given by the BCS theory and taking as
the critical temperature Tc0=38 K.
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close to the critical temperature proves the persistence of
interlayer correlations above the irreversibility temperature.
Nevertheless, the scaling fails above the midpoint critical
temperature, above which the c-axis charge transport is gov-
erned by quasiparticles only. This is different from the in-
plane dissipation, in which the contribution of the supercon-
ducting fluctuations can be discerned up to temperatures as
high as 1.5	Tc0. We also have determined the interlayer

critical current density. It was found to be lower than pre-
dicted by simple models of Josephson coupled superconduct-
ors.
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