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Magnetoconductivity due to quantum interference in strongly underdoped YBa2Cu3Ox
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We report magnetoconductivity measurements on YBa2Cu3Ox (x56.25 and 6.36) single crystals. Our main
result is that both the in-planeDsab and out-of-planeDsc magnetoconductivities exhibit the field dependence
characteristic of ‘‘two-dimensional’’ quantum interference in applied magnetic fieldsHuuc. Namely,Dsc,ab

} ln H/H0.0, with Dsc /sc substantially greater thanDsab/sab. We interpret this result as an evidence of
interlayer incoherence in these crystals, so that the phase-coherent trajectories are mostly confined to one
bilayer.
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I. INTRODUCTION

Understanding the anomalous features of the in-plane
out-of-plane normal state transport in layered cuprates
mains a challenge. Among the properties of the resistiv
tensor$rc ,rab%, which are some of the most unusual fro
the point of view of the conventional Fermi liquid theory a
strongly temperature dependent anisotropyrc /rab and coex-
istence of metallicrab(T) and nonmetallicrc(T) over ex-
tended temperature and doping ranges. It has been sugg
that these anomalies of the out-of-plane transport are the
sult of interlayer incoherence.1,2 This means that the phas
coherent trajectories, along which the single electrons m
tain their phase memory, are all confined to a single bila
because the interbilayer transitions lead to dephasing of
unknown origin. An experimental confirmation ofc-axis in-
coherence was provided by optical measurements.3

The suggestion of interlayer incoherence in the norm
state of the cuprates, however, is not fully accepted. Th
are alternative models of the out-of-plane transport that
not involve interlayer incoherence.4,5 The phase coherent tra
jectories in such models are three dimensional~3D! and ex-
tend over many unit cells in both the in- and out-of-pla
directions.

Magnetoeffects due to quantum interference allow,
principle, the determination of the dimensionality of th
phase coherence. Magnetoconductivity arises in relativ
small magnetic fields due to contributions of the se
intersecting phase coherent trajectories along which
loops can be traversed in two different directions.6–8 The
magnitude and field dependence of magnetoconductivity
determined by the probability of a trajectory to form a lo
of a given area. If the phase-coherent trajectories are
dimensional~2D!, they are substantially more likely to form
large loops than 3D ones. This results in a more pronoun
effect, observable at higher temperatures. The field dep
dence of magnetoconductivity is also different in these t
cases; namely, 2D trajectories lead toDs} ln H, while 3D
trajectories lead toDs}H1/2.

Here we present magnetoresistivities of two strongly
derdoped YBa2Cu3O6.25 and YBa2Cu3O6.36 single crystals.
Our results can be summarized as follows. Both compon
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Drc/rc andDrab/rab of the magnetoresistivity tensor reve
the presence of two different conduction mechanisms
magnetic fieldsHic. ~1! In low fields, the magnetoresistivi
ties are negative and have a logarithmic field depende
over about a decade~at the lowest accessible temperatur!.
This behavior represents the main focus of this paper. W
distinguishes these results from traditional experiments
ultrathin films and other 2D systems6,9 is that the out-of-
plane magnetoresistivity has the logarithmic field dep
dence and is substantially larger than the in-plane mag
toresistivity. We interpret these findings as a confirmation
a strong interbilayer decoherence and, therefore, the 2D
ture of the phase-coherent paths. Under this condition, b
components of the conductivity depend on the in-plane ph
coherence lengthl w , which changes with field logarithmi
cally, thus producing the correspondingH dependence of the
magnetoresistivities.~2! In high magnetic fields and at low
temperatures, both magnetoresistivities become positive
change asgH2 up to the largest available field of 14 T. Th
contribution arises from antiferromagnetic correlations.

II. EXPERIMENTAL DETAILS

Strongly underdoped YBa2Cu3Ox (x56.25 and 6.36)
single crystals were grown in gold crucibles using the se
flux method. The oxygen stoichiometry was adjusted by
nealing the samples at 500 °C in a predetermined O22N2
atmosphere.10 In-planerab and out-of-planerc resistivities
and the respective magnetoresistivities~MR! were measured
by a multiterminal method on the same single crystal,
magnetic fieldsH up to 14 T. This allows us to carry out
quantitative comparison between in-planeDrab /rab and
out-of-planeDrc /rc magnetoresistivities as a function o
temperatureT and applied magnetic fieldH. All previous
measurements of MR in YBa2Cu3Ox reported in the litera-
ture were obtained by a four-point method, so thatDrab /rab
and Drc /rc were measured on different single crysta
Since magnetoresistivity is very small, inevitable variatio
of stoichiometry, shape, and size of specimens have a l
effect on its value, and preclude any quantitative analysis
correlations between different components of the magnet
sistivity tensor.
©2001 The American Physical Society15-1
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Low contact resistance gold leads were attached u
thermally treated silver pads and room temperature si
epoxy. We applied an ac electrical currentI;0.1 mA
through the two leads on the ‘‘top’’ face and measured
two voltage drops on the same~top voltageVt) and the op-
posite ~bottom voltageVb) faces of the sample.11 The two
voltagesVt,b and their variation with fielddVt,b were mea-
sured using a low-frequency 17 Hz resistance bridge at c
stant temperature, while sweeping the magnetic fieldH ap-
plied parallel to thec axis of the single crystal.

The temperature of the sample chamber was kept cons
using two temperature sensors~Pt thermometer forT
.100 K and Cx sensor forT,100 K). The temperature
changedT(H) resulting from the magnetoresistance of t
sensors was measured by carefully calibrating them usin
capacitance thermometer, which has zero magnetoresist
The effect of the magnetic field onVt,b was then determined
by subtracting the effect of this temperature change from
raw data; i.e.,

DVt,b~H !5dVt,b2dT~H !
dVt,b

dT
. ~1!

Unlike in the four-point method, the distribution of th
current inside the sample is nonuniform. As a result, the H
voltage contributes to the field variation of the top and b
tom voltages. To first order in magnetoconductivities, app
priate for these measurements,

DVt,b~H !5At,bDsxx1Bt,bDszz1Ct,bsxy , ~2!

whereDsxx andDszz are magnetoconductivities, whilesxy
is the off-diagonal component of the conductivity tensor. T
coefficientsAt,b , Bt,b, and Ct,b can be obtained from the
solution of Laplace’s equation determining the distributi
of voltage inside the sample.~Within a linear approximation,
these coefficients depend on the zero-field values of the
ductivity tensor, which is diagonal.!

The most reliable way to determine the magnetocond
tivities Dsxx andDszz from Eq. ~2! is to eliminate the con-
tribution of the Hall effect by measuringDVt,b(H) at two
opposite polarities6H of the applied magnetic field. Th
even componentDVt,b

1 (H)51/2@DVt,b(H)1DVt,b(2H)#
determines the magnetoconductivity, while the odd com
nent DVt,b

2 (H)51/2@DVt,b(H)2DVt,b(2H)#5Ct,bsxy .
The magnetoconductivities were then calculated fr
DVt,b

1 (H) using an algorithm described in Ref. 11.
As an example of the raw data, the main panel of Fig

shows the field dependence ofDVt of the x56.36 single
crystal, measured atT5100 K, while the inset displays its
odd DVt

2 and evenDVt
1 components. The field dependen

of DVt clearly separates into quadratic dependence ofDVt
1

and, consequently, of magnetoconductivity, and linear
pendence ofDVt

2 and, hence, Hall conductivitysxy .
The multiterminal technique has never been used be

to measure magnetoconductivities of cuprates. The app
tion of this method to magnetomeasurements has subtle
important, differences with the conventional four-poi
method. For example, in the multiterminal method one m
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sures magnetoconductivities, while in the conventional fo
point method one measures magnetoresistivities. It shoul
noted that most theoretical approaches to magnetoeffects
scribe magnetoconductivities rather than magnetoresis
ties. Assuming thatsxz andsyz are negligible, the relation-
ship between magnetoresistivities and magnetoconductiv
is given by:12

Drxx

rxx
52

Dsxx

sxx
2

sxy
2

sxx
2

;
Drzz

rzz
52

Dszz

szz
. ~3!

Comparing the values of the even and odd compone
DVt,b

6 , we find that in most casesDsxx;sxy ; and, since
both of them are very small, the quadratic term in Eq.~3! is
negligible. Therefore, the magnetoresistivities are given
rectly by magnetoconductivities with inverted sign. The on
exception to this case is at very low magnetic fields wh
sxy.Dsxx , since sxy}H while Dsxx}H2. Therefore, at
very low fields, one needs to knowsxy in order to obtain
magnetoresistivity from magnetoconductivity. In this pap
we present all our results in terms of magnetoresistivity
tained from the measured magnetoconductivity, accordin
Eq. ~3!, where we neglect the quadratic term. This facilita
a direct comparison between our data and already publis
magnetoresistivity data.

III. MAGNETORESISTIVITY

Figures 2~a! and 2~b! show theT dependences of the re
sistivities of YBa2Cu3O6.36 and YBa2Cu3O6.25 single crys-
tals, respectively, in zero magnetic field. These single cr
tals display a diverseT dependence of resistivities, an
antiferromagnetism belowT'40 K in x56.36 sample and
for all T,300 K in x56.25 crystal. Coexistence of metalli
rab and nonmetallicrc over an extensive temperature ran
is characteristic of underdoped cuprates. We note that
in-plane resistivityrab is metallic above a certain tempera

FIG. 1. Main panel: The fieldH dependence of the top voltag
DVt for the x56.36 single crystal, measured atT5100 K in Hic.
Inset: odd DVt

251/2@DVt(H)2DVt(2H)# and even DVt
1

51/2@DVt(H)1DVt(2H)# components of the top voltage ob
tained from the data shown in the main panel.
5-2
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FIG. 2. TemperatureT dependence of zero-field in-planerab

and out-of-planerc resistivities for ~a! YBa2Cu3O6.36, and ~b!
YBa2Cu3O6.25.

FIG. 3. FieldH dependence of magnetoresistivities forHic: ~a!
Drab/rab and ~b! Drc /rc for YBa2Cu3O6.36 at 50 and 75 K.
10451
ture even in the strongly underdoped samples. The cross
to nonmetallic behavior inrab takes place at progressivel
higher temperatures in more underdoped samples. For
ample, the minimum inrab shifts from '50 K for the x
56.36 sample to'175 K for thex56.25 sample.

Measurements of the MR tensor on YBa2Cu3O6.36 at tem-
peratures higher than 75 K showed that the field depende
of both in-plane and out-of-plane MR is quadratic.13 How-
ever, at lower temperatures, the field dependence of the
tensor becomes nontrivial@see Figs. 3~a! and 3~b!#. Namely,
at 50 and 75 K, a negative MR component, with a large slo
at relatively low fields, is superimposed on a positive qu
dratic field dependence. Notice that the minimum inDrc /rc
is approximately twice the minimum inDrab /rab . At higher
magnetic fields, MR is positive and changes quadratica
with H.

Figures 4~a! and 4~b! display the magnetic fieldH depen-
dence of MR of the YBa2Cu3O6.25 single crystal. The same
phenomenon as in the previous sample, namely, sharply
veloping negative MR in low fields which turns into positiv
quadratic dependence in high fields, is even more p
nounced.

The field dependence of MR illustrated in Figs. 3 and
can be described for both samples as a sum of two contr
tions: a negative contributionQi(H) wherei 5$c,ab%, and a
positive quadratic contribution; i.e.,

Dr i

r i
5Qi~H !1g iH

2; Qi~H !,0; g i.0. ~4!

FIG. 4. Field H dependence of magnetoresistivities:~a!
Drab/rab and ~b! Drc /rc for YBa2Cu3O6.25.
5-3
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We examine in more detail the field dependence of
MR components measured at 75 K on YBa2Cu3O6.25 in Fig.
5~a!. First, we note that the negative contribution to MR
much larger for the out-of-plane component than for the
plane component; for example, the absolute value ofDrc /rc
at its minimum is about seven times the correspond
Drab /rab . Second, bothDrc /rc andDrab /rab measured in
high magnetic fields are well fitted with a parabolic depe
dence g iH

22e i , as shown by the solid curves, wit
gc51.331025 T22, gab56.2531026 T22, ec'0.15%,
and eab'0.03%. We discuss the origin of this quadraticH
dependence at the end of the next section.

The field dependence ofQi(H) in Eq. ~4! can be deter-
mined by subtractingg iH

2 from the total MR, and is illus-
trated in the semi-log plot of Fig. 5~b!. The straight lines are
fits to the data and reveal the logarithmic dependence
Qi(H) within a certain range ofH. The functional depen-
dence ofQi(H) can be summarized as follows:

Qi~H !'5
2e iH

2/H0
2 , H,H0 ;

2e i

ln~H/H0!

ln~H1 /H0!
, H0,H,H1 ;

2e i , H.H1 .

~5!

FIG. 5. ~a! MagnetoresistivitiesDrc /rc and Drab/rab for
YBa2Cu3O6.25 at T575 K in magnetic fieldsHic. The solid lines
represent quadratic fitsg iH

22e i ( i 5$c,ab%). ~b! Orbital compo-
nent of magnetoresistivityQi5Dr i /r i2g iH

2 plotted vs logarithm
of field. The straight lines correspond to the logarithmic depende
given by Eq.~5!. The crossover fieldsH0 andH1 are indicated.
10451
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The most interesting part is the logarithmic dependence, c
ering almost a decade ofH. The value of the parameterH0 is
determined by the intercept of the straight line, according
Eq. ~5!. For H.H1'4 T, Qi(H) saturates at the value ofe i
obtained earlier by the parabolic fit in Fig. 5~a!. The
ln(H1 /H0) in the denominator of Eq.~5! is required to match
the interpolations ofQi(H) at H0,H,H1 andH.H1.

The negative contribution to the in-plane MR is smal
and, therefore, the data are noisier, but the procedure o
ting the high field regime data with a parabolic depende
yields Qab(H) with approximately the sameH dependence
asQc(H); i.e., Qc(H)/Qab(H)'const57.

IV. DISCUSSION

The most intriguing observation that emerges from
data presented above~Figs. 3 and 4! is the presence of a
negative MR component in low fields@given by Qi(H) in
Eq. ~4!#, especially pronounced inDrc /rc , which exhibits at
the lowest accessible temperatures a logarithmicH depen-
dence. This negative MR is superimposed on a positive q
dratic background@g iH

2 in Eq. ~4!#, which is due to antifer-
romagnetic ordering.14 Below, we show that the low field
features of MR are direct consequences of interlayer inco
ence.

Our approach is based on the understanding that stro
underdoped layered crystals like YBa2Cu3Ox are character-
ized by incoherent out-of-plane transport. This was shown
optical measurements of the conductivity on underdop
YBa2Cu3Ox.

3 In incoherent crystals, the value of the out-o
plane coherence lengthl w,c is T independent, equal to its
minimum possible value. Since the coherence length of e
tron wave functions in a crystal cannot be smaller than
size of the atomic orbitals that overlap over the interbilay
distance, the minimum possible value ofl w,c is the interbi-
layer distance; i.e.,l w,c5 l 0511.7 Å . Thus a fundamenta
property of fully incoherent crystals is thatl w,c does not
change with temperature or magnetic field. Therefore,
only length scale that determines the dissipation and
change with temperature or applied magnetic field is the
plane phase coherence lengthl w . ~Hereafter, we assume fo
brevity that the planes are isotropic and omit the subsc
ab.! Under these conditions, both conductivities depend o
on the variablel w @sab( l w) and sc( l w)#, so that their tem-
perature and field dependences come from that ofl w . ~An
instructive discussion regarding the dependence of cond
tivity on the spatial length scale of inelastic scattering p
cesses is presented in Ref. 8!.

The immediate consequence is a correlation between
magnetoconductivities and the field variation of the in-pla
coherence length at constantT:

Dsab~H !

sab
5kab

D l w~H !

l w
;

Dsc~H !

sc
5kc

D l w~H !

l w
, ~6!

wherek i[d ln si /d ln lw (i5$ab,c%).
The coefficientsk i are dimensionless numbers of the o

der of unity. Their sign determines the type of electrical co
duction ~metallic or nonmetallic!; i.e., if k i.0, then

e

5-4
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]s i /]T,0 and the conduction is metallic, while ifk i,0,
then ]s i /]T.0 and the conduction is nonmetallic.15 It is
important to remember that in Eq.~6! and hereafter,
Dsab /sab and Dsc /sc are the ‘‘orbital’’ contributions to
magnetoconductivity also denoted asQi in Eq. ~4!.

According to Eq.~6!, the sign of the MR tensor is dete
mined by the sign ofk i and the effect of the magnetic fiel
on l w . It is known,6 and shown in more detail in the Appen
dix, that the magnetic field decreases the phase coher
length due to its effect on self-intersecting trajectories,
that D l w(H),0 in a weak field. The sign ofk i can be in-
ferred from theT dependence of the resistivity. Specificall
for YBa2Cu3O6.25, kc,ab(T),0 for T,175 K, since both
rc and rab are nonmetallic@see Figs. 2~a! and 2~b!#. Then,
according to Eq.~6!, both magnetoconductivity componen
are positive ~MR, correspondingly, are negative! for T
,175 K, as indeed is the case~see Fig. 4!. By applying the
same reasoning to the YBa2Cu3O6.36 sample, one conclude
that Drc /rc should be negative, whileDrab /rab should be
practically zero at 75 K and should become negative foT
<50 K, whererab turns nonmetallic as well. This is consis
tent with the low field data of Fig. 3.

Also, according to Eq.~6!, the field dependence of bot
MR is the same, determined by that ofD l w(H). Therefore,
their ratio should be a constant, given by the ratio of
correspondingk i ; i.e.,

D~ ln sc!

D~ ln sab!
5

kc

kab
. ~7!

As discussed in Refs. 16 and 17, in incoherent crys
sc( l w)}sab( l w)/ l w

2 . As a result,kc5kab22. Therefore,
whenkab is negative~as is the case with our crystals at lo
temperatures!, the absolute value ofD(ln sc) is greater than
that of D(ln sab), namely,

D~ ln sc!

D~ ln sab!
5

ukabu12

ukabu
. ~8!

In other words, when theT dependence of both conductiv
ties is nonmetallic, the out-of-plane conductivity depen
stronger on the phase coherence length, and the respe
MR is greater by a constant factor.

This conclusion is, indeed, supported by the experime
data. The ratio of the magnetoresistivities is a constant fa
which can be estimated, for example, from Fig. 5~b!.
Namely, for YBa2Cu3O6.25 at T575 K, Qc is about seven
times greater thanQab . From Eq. ~8!, we estimatekab
'20.33.

We now turn our attention to the specific field depende
of the magnetoresistivities. The logarithmic field depende
of Q at low temperatures and in relatively small magne
fields indicates 2D quantum interference.6,8 This effect is due
to the presence of self-intersecting trajectories along wh
electrons can traverse the loop in opposite directions.6,8 A
small applied magnetic field gradually destroys the quan
interference, which induces a variation in the phase coh
ence length and, therefore, a variation in the conductivity
10451
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The self-intersecting trajectories constitute a small fr
tion of the total number of phase coherent trajectories o
given length. The great majority of the phase coherent
jectories~trajectories over which the phase changes pred
ably and, therefore, no irreversible processes are involv!
are not self-intersecting.

As Fig. 2 shows, both resistivities change strongly w
temperature and, therefore, their magnitude andT depen-
dence are determined by the contribution of the majority
nonintersecting trajectories. The small, temperature dep
dent corrections to conductivities~in zero field! due to self-
intersecting trajectories, known as corrections due to w
localization, can only be observed when the main contri
tion to conductivity, which is due to nonintersecting path
saturates~regime of residual resistivity!. Our samples are no
in this regime. Therefore, the contribution of the trajector
with loops to theT dependence of both conductivities
negligible in our samples, andsab(T) and sc(T) do not
reflect the characteristic lnT ~in 2D! or T1/22T1/3 ~in 3D!
dependence due to quantum interference, which is usu
the subject of discussion in the literature.

On the other hand, the magnetoconductivity produced
a weakmagnetic field is due to self-intersecting trajectorie
because all the other~conventional! contributions to magne-
toconductivity are still negligible. Therefore, the magne
conductivity caused by the effect of the field on the se
intersecting trajectories can be experimentally identified.

In order to determine the field dependence of both m
netoconductivities, we need to evaluate the magnetic fi
variation of the coherence length@D l w(H)/ l w#. A semi-
quantitative derivation of this dependence is given in
Appendix, with the following results:

D l w

l w
'5

2hH2/H0
2 , H,H0 ;

2h
ln~H/H0!

ln~H1 /H0!
, H0,H,H1 ;

2h, H.H1 .

~9!

Hereh is a small number determined by the relative weig
of the number of the self-intersecting trajectories, with
spect to that of the majority nonintersecting trajectories. T
lower crossover fieldH0 is determined by the condition tha
the field flux through the largest loops along the phase
herent trajectories is approximately equal to the flux qu
tum f05231027 Oe cm2; namelyH0;f0 / l w

2 . The upper
crossover fieldH1 is determined by the similar condition tha
the field flux is of the order off0 through the smallest pos
sible loops~of the order of the elastic mean free pathl el);
i.e., H1;f0 / l el

2 . For H.H1, no trajectory with loops con-
tributes to the value of the phase coherence length. He
D l w saturates.

From Eqs.~6! and ~9! follows Eq. ~5! with e i52h k i .
The nontrivial logarithmic field dependence appears o
when there is a significant field range betweenH0 and H1.
This requires the phase coherence length to be substan
greater than the elastic mean free path, which means a w
developed diffusive regime. Therefore, the magnetoeffe
due to self-intersecting trajectories are more pronounce
5-5
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stronger underdoped samples. For YBa2Cu3O6.25 at T
575 K @see Fig. 5~b!#, we estimate thatec'0.15%,H0
;0.3 T which corresponds tol w;103 Å , and H1
;4 T (l el;270 Å ). ForH.4 T, the contribution of quan-
tum interference to magnetoconductivities saturates
other types of contributions to MR become dominant, as d
cussed below.

Experimentally, one can relatively easily distinguish b
tween the cases of 2D and 3D phase coherent trajecto
First, the magnetoeffect of self-intersecting trajectories
substantially greater in 2D, because of the greater probab
of a 2D trajectory to form a large loop (h;l/ l el in 2D and
h;l2/ l el

2 in 3D; see the Appendix!. Therefore, in this case
the effect becomes pronounced and observable at relat
high temperatures. Second, the logarithmicH dependence
can be distinguished fromH1/2 rather clearly even for only
one decade inH. These features observed in MR would po
to the 2D nature of the phase coherent trajectories. All th
manifested together, as is the case with our MR data
YBa2Cu3Ox shown above, make this conclusion very co
pelling. It should be noted that the ‘‘3D’’H1/2 dependence o
MR in manganites was reported recently by Li, Gray, a
Mitchell.18

Finally, we discuss briefly the origin of the positive co
tribution that changes asg iH

2, and becomes dominant a
applied magnetic fields larger than 4 T~see Figs. 3 and 4!. A
similar type of MR was reported by other groups as wel14

and it was associated with antiferromagnetic fluctuations
antiferromagnetic ordering. Indeed, YBa2Cu3O6.25 is antifer-
romagnetic for all temperatures below room temperatu
while YBa2Cu3O6.36 is antiferromagnetic forT<40 K. In
high magnetic fields, the contribution of the AF correlatio
to MR dominates the smaller contribution of the se
intersecting trajectories. At sufficiently low temperature
these two contributions can be clearly separated, as il
trated in Figs. 5~a! and 5~b!.

V. SUMMARY

We present magnetoresistivity data for two strongly u
derdoped single crystals of YBa2Cu3Ox with x56.36 and
6.25. Both in-planeDrab and out-of-planeDrc magnetore-
sistivities MR were measured simultaneously on the sa
single crystal using a multiterminal method. This permits
direct comparison between their temperature and field de
dences.

The most interesting observation is a negative MR in l
applied magnetic fields. This low field contribution is cha
acterized by two important features. First, the effect is stro
and, therefore, is pronounced even at relatively high te
peratures~75 K and higher!. Second, the field dependence
consistent with ln(H), rather thanH1/2. These features poin
towards the 2D nature of the phase coherence in these
tals; namely, the phase-coherent volume contains only on
two neighboring bilayers, while the coherence length alo
the planes is orders of magnitude greater than the size o
unit cell.

We attribute the second contribution to MR, whic
changes quadratically with field up toH514 T, to the effect
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of H on the AF correlations. This positive contribution dom
nates at fields above 4 T and induces a change in the sig
the total MR for both components of the magnetoresistiv
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APPENDIX

To determine the effect of the magnetic field on se
intersecting phase coherent trajectories and the resultan
fect on the phase coherence length, we use the qualita
approach described in Refs. 6 and 8. The coherent traje
ries consist of two groups. The great majority of them are
self-intersecting, and they determine the value and the t
perature dependence of the phase coherence length and
sequently, of the conductivities. A much smaller fraction
the coherent trajectories have loops and exhibit the inter
ence effect.

We begin our estimate by defining the phase cohere
length in zero magnetic fieldl w(0) as the mean square ave
age distance in thex direction that an electron travels, whil
retaining its phase memory~i.e., without encountering
dephasing inelastic collisions!:

l w
2~0!5E

0

`

x2@~12h!P0~x!1hPsi~x!#dx. ~A1!

HereP0(x) @Psi(x)# is the probability that the phase cohe
ence is retained between points A and B separated by a
tancex, when all trajectories without@with# self-intersections
are counted. Both probabilities are normalized to unity. T
small numberh!1 reflects the relative weight of self
intersecting trajectories. We also introducep(x,A) as the
probability density that a self-intersecting, coherent traj
tory ~in zero field! has a loop of areaA, subject to the nor-
malization condition:

E
p l el

2

px2

p~x,A!dA5Psi~x!. ~A2!

Here, the smallest possible area of the loop is determined
the elastic mean free pathl el , and the largest possible loop
determined by the distancex between A and B.

Along self-intersecting trajectories, an electron c
traverse the loop in opposite directions with no phase diff
ence between the respective amplitudes. An applied m
netic field, however, introduces a phase differencewH
52pf/f0 between the two alternative routes along t
same trajectory. Heref5AH is the magnetic field flux
through the loop,A is the area of the loop normal to th
field, andf05231027 Oe cm2 is the flux quantum. As a
result, when an electron arrives at point B following a se
intersecting route, its phase is unpredictable and varies
wH>p if the corresponding trajectory has a loop with ar
A>f0/2H. Therefore, such a trajectory is no longer pha
5-6
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coherent and does not contribute to the average given by
~A1!. This is the mechanism by which a weak field chang
the coherence length and, respectively, the conductivitie

We give a rough estimate ofD l w(H) by considering that
all self-intersecting trajectories with loop areasA>f0/2H
do not contribute to the average in Eq.~A1!, while those with
A,f0/2H still do. The phase coherence length in a ma
netic field is then given by

l w
2~H !5E

0

`

x2 dxF ~12h!P0~x!1hE
p l el

2

p l H
2

p~x,A!dAG ,
~A3!

where the magnetic lengthl H5(\c/2eH)1/2 is determined by
the conditionp l H

2 5f0/2H.
Taking into account Eqs.~A1! and ~A2! and the small

value ofh, we obtain from Eq.~A3!:

2D l w~H !

l w
'2h

E
l H

`

x2 dxE
p l H

2

px2

p~x,A!dA

E
0

`

x2P0~x!dx

. ~A4!

Thus thedecreaseof the phase coherence lengthD l w(H) is
proportional to the weight of excluded self-intersecting t
jectories, namely, those with loop areasA>p l H

2 . The lower
limit of integration inx is l H because the trajectories with
coherent distancex< l H cannot have loops with areaA
>p l H

2 and, therefore, are not part of the excluded se
intersecting trajectories.

Next we find the expression forp(x,A) using the diffu-
sive approximation.8 Since phase-coherent trajectories a
2D ~we discuss here incoherent crystals!, the probability to
find an electron at a pointrW from its starting origin att50 is
W(rW)d2r}exp(2rW2/4Dt)d2r/4Dt, whereD is the diffusion co-
efficient. The trajectory intersects itself between the timet
and t1dt if it enters the arealv dt around the origin. Here
l is the de Broglie wavelength~the trajectory is viewed as
tape of widthl, rather than a line!. The probability of return,
and, consequently, the probability to form a loop is given
p(t)dt}W(0)lv dt}lv dt/Dt. Since the area of the loop i
proportional to the average distance from the origin,A
}^rW2&}Dt, and dA}D dt, the probability of a loop with
area betweenA andA1dA is given by (lv/D)dA/A. Thus
the probability that a 2D trajectory has a loop of areaA
scales as 1/A.

The prefactorlv/D determines the overall probability o
self-intersecting trajectories and gives the numberh, which
we introduced ‘‘by hand’’ earlier:h;lv/D;l/ l el , because
D;v l el . Assuming l;223 Å and l el;2002300 Å ,
which is a reasonable estimate given the density of cha
carriers, we obtainh;0.01. It means that the maximum e
fect of removing self-intersecting trajectories from the av
age in Eq.~A4! reducesl w by about 1%. Other numerica
factors also absorbed inh can reduce it further. This corre
lates with the maximum value of the negative MR in F
5~b! of the order of 0.1%.
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Since the diffusive motion has no memory, having a lo
does not affect the statistical properties of the rest of
trajectory. Therefore, the probability densityp(x,A)dA can
be roughly estimated as

p~x,A!dA'
Psi~x!

ln~x2/ l el
2 !

dA
A , ~A5!

where the logarithm in the denominator is the normalizat
factor due to Eq.~A2!. Now the integral in~A4! becomes:

E
l H

`

x2 dxE
p l H

2

px2

p~x,A!dA5E
l H

`

x2Psi~x!
ln~x2/ l H

2 !

ln~x2/ l el
2 !

dx.

~A6!

The characteristic logarithmic field dependence of this
tegral appears whenl H

2 decreases below the value ofl w
2 . This

is equivalent to the condition that the field flux through t
largest loops along the phase coherent trajectories is app
mately equal tof0/2; hence, the characteristic fieldH0
5f0 /2p l w

2 . As l w increases with decreasing temperatu
the onset fieldH0 can become very small and the MR, due
the interference effect, manifests itself when all the oth
sources of MR are negligible. The upper crossover field
defined by the condition that the field flux isf0 /2 through
the smallest loops with the area of the order ofp l el

2 ; hence
H15f0 /2p l el

2 . The upper field does not change with tem
perature, while the lower fieldH0 decreases with decreasin
T. Therefore, this effect is observable at sufficiently low te
peratures whenH0,H,H1 or, equivalently,l w

2. l H
2 . l el

2 .
In this regime, the integral~A6! can be easily estimate

because the logarithms are slowly changing functions
can be taken at the valuex' l w , which corresponds to the
maximum in x2Psi(x). Other contributions to this integra
are negligible in comparison with the logarithmic increa
; ln(lw

2/lH
2 )5ln(H/H0). Correspondingly, the logarithm in th

denominator of Eq.~A6! becomes ln(lw
2/lel

2 )5 ln(H1 /H0). In
this regime, the denominator in Eq.~A4!, *0

`x2P0(x)dx
;*0

`x2Psi(x)dx' l w
2 , and we get Eq.~9!, with all numerical

factors absorbed inh. Hence, according to Eq.~6!, both
conductivities have the logarithmic field dependence. FoH
.H1, the integral~A6!, hence Eq.~A4!, saturates, since no
self-intersecting trajectories contribute to the average~A3!.

It is important to underline that the transport in these cr
tals is obviously 3D, but the phase coherence is 2D, mean
that the distribution of the area of the loops along pha
coherent trajectories scales as 1/A, leading to the logarithmic
field dependence ofD l w(H) and both magnetoconductivities
This result remains valid even when the coherence is es
lished between two neighboring bilayers. As long asl w,c
; l 0! l w,ab, the distribution of loop areas is close to 1/A.

True 3D phase coherent trajectories requiresl w,c@ l 0.
Then, a similar analysis8 shows that the distribution of the
loop areas isdA/A 3/2 and h;l2/ l el

2 . Then, in the regime
H0!H!H1, Eq. ~A4! gives

D l w~H !

l w
;2

l2

l el
2

l el

l H
;2

l2

l el
2 S H

H1
D 1/2

. ~A7!
5-7
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