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We report magnetoresistivity measurements on Y Ba;Cu30e.36 single crystals in applied magnetic fields H||c
up to 14 T. We observe several unusual features: the out-of-plane magnetoresistivity Ap./p. is negative at
high temperatures T and becomes positive for T < 150 K. The in-plane magnetoresistivity Apas/pas is positive
and displays a maximum at T =~ 180 K. There is a direct correlation between the sign and T-dependence of
magnetoresistivities and the corresponding temperature coefficients of resistivities; i.e. Apc,ap ~ dpc,ap/dT over
the measured T range for the in-plane component and for T > 150 K for the out-of-plane component.

The anomalous properties of the in-plane
pap and out-of-plane p. resistivities in layered
cuprates are a main challenge to the understand-
ing of these materials. Magnetoresistivity is a
sensitive and important probe of the conduction
mechanism. We present data on magnetoresis-
tivities (MR) Ap./p. and Apgs/pas Obtained on
Y BayCu30g 36 single crystals. The main empha-
sis of this work is on the correlation between the
magnetoresistivities and the temperature coeffi-
cients of the resistivities (TCR) dinp; qp/dT. We
find that Apgp/pap and dinpes/dT correlate over
the measured T range (100 K < T < 275 K).
A similar relationship exists between Ap./p. and
dinp./dT for T > 150 K. However, for T <
150 K, Ap. changes sign while dp./dT remains
negative.

In-plane and out-of-plane resistivities were
measured by a flux transformer method [1]. The
data were corrected for the Hall voltage by per-
forming measurements in both negative and pos-
itive H and retaining only the even components
of the primary V, and secondary voltages V;:
AV, = 1/2[AV, 4(H) + AV, 4(—H)]. The tem-
perature sensor was carefully calibrated to ac-
count for its magnetoresistance.

Figures 1(a) and 1(b) show the H-dependence
of Apas/pap and Ap./p., respectively, for Hllc
and different T. Both MR components display
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Figure 1. Field H dependence of magnetoresis-
tivities: (a) Apas/pab and (b) Apc/p. for several
temperatures. Lines are guide to the eye.

a H? dependence, as expected in the weak field
regime. If we do not correct for the Hall effect,
the apparent MR shows a mixture of linear and
quadratic field dependences.

The T-dependences of Apap/pas and Ap./p. in
H = 14 T are presented in Figs. 2(a) and 2(b),
respectively. The insets show the respective TCR
vs T. A comparison between the main panels and
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Figure 2. Temperature T dependence of (a)

Apas/peb and (b) Ap./p. in a field H||c of 14 T.
Insets: T-dependence of the temperature coeffi-
cients of the resistivities: (a) dinp,p/dT and (b)
dinp./dT

the corresponding insets reveals a direct correla-
tion between MR and the respective TCR, both
in sign and T-dependence, over the measured T
range for the ab component and for T > 150 K
for the ¢ component. For T < 150 K, Ap./p. be-
comes positive while dinp./dT remains negative.
The correlation between magnetoresistivity
and TCR can be understood as a consequence
of incoherent interlayer transport. When inter-
layer transitions are incoherent, as is the case
with Y BasCu3Q0g.36 [2], the out-of-plane phase
coherence length £, . is T-independent, equal to
the interlayer spacing £y. As aresult, the in-plane
conductivity o, is only a function of the in-plane
phase-coherence length: g, = f(£y,a8) [3]-
anisotropic systems, the ratio of the conductivi-
ties is given by the ratio of the phase coherence
lengths in the respective directions: og/0. =
& /6 [4]. Therefore, ac = f(£p,a5)63/8 op-

Hence, the T and H dependence of both conduc-
tivities appears only through that of £, 4. Then,

aa’c ab 60'c ab _ a&p,ab/aH
B ~9ar 955, or @)

Since 0f,,0p/0H < 0 and 8,,4,/0T < 0, the
sign of each magnetoresistivity is given by the
sign of the corresponding TCR. The coefficient
Q may have a certain T-dependence, but this de-
pendence should be rather weak due to a partial
cancellation of the T-dependences of 94, 45/80H
and 04, 45/0T. Therefore, Apgs/pap and Ap./p,
should closely reproduce the T-dependence of the
respective TCR as, indeed, is the case at high
temperatures [see Figs. 2(a) and 2(b)].

The out-of-plane magnetoresistivity Ap./p.
deviates from the behavior described by Eq. (1)
at T < 150 K [Ap./p. becomes positive while
dlnp./dT remains negative]. This indicates that
the condition of interlayer incoherence is not ful-
filled at these temperatures in Y BasCuzOg 36.
As aresult, £, . becomes T-dependent, increasing
beyond the interlayer spacing, and thus changes
in applied magnetic field due to spin ordering ef-
fects. It appears likely that the transition to par-
tial coherence in the c-direction is related to the
antiferromagnetic transition that takes place in
Y BasCu30¢.36 at Ty =~ 40 K. Recently, a posi-
tive Ap./p.(T) was also observed in strongly un-
derdoped Y BayCusQ; single crystals over a wide
T range above Ty and was attributed to the an-
tiferromagnetic fluctuations [5)].

REFERENCES
1. C. N. Jiang et al., Phys. Rev. B 55, R3390
(1997).

2. D. N. Basov et al., Science 283, 49 (1999).

3. C. C. Almasan et al., J. Low. Temp. Phys.
117, 1307 (1999); C. C. Almasan et al., Int.
J. Mod. Phys. B 13, 3618 (1999).

4. G. A. Levin et al., Phys. Rev. Lett. (submit-
ted).

5. A.N. Lavrov et al., Phys. Rev. Lett. 83, 1419
(1999).



