I-B  Part 1: A particle of mass m at a distance R from another mass M is bound
by a gravitational potential energy V(R) = —GMm/R. If the particle moves at escape
velocity vesc, it has just enough kinetic energy to reach infinity, i.e.,
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For a circular orbit under a gravitational force Fyy = GMm/R?, the orbital speed v
is constant and we can equate Fi,, to
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Part 2: Let F. be the cable tension at the counterweight. The centripetal force on
the counterweight is partly from gravity acting on the counterweight, and the remainder
is from the cable tension:
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where R, is the radius of the counterweight’s orbit. Using v. = ves. and Eq. (1), we can
eliminate v, and express the tension as:

+ F.

m
F,=—
R,

(2GM> B GMm GMm

R, 2 = R

Next, we need an expression for R., the radius of the counterweight’s orbit, in terms
of the given quantities:
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Thus we conclude that
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Note that F, above gives the cable tension at the counterweight regardless of whether or
not the weight of the cable itself needs to be taken into account.



Part 3: The following is an outline of the qualitative argument. The optimum
thickness of the beanstalk cable needs to increase or decrease as the total tension in
the cable increases or decreases. Consider what happens as we move inward from the
counterweight, where the tension is F, (as calculated in part 2 above). Every part of the
cable between the geosynchronous satellite and the counterweight is moving faster than
the speed of an untethered satellite in a circular orbit at the same radius. (Remember that
the counterweight’s orbital speed equals escape velocity.) Allowing for the finite mass of
the cable itself, the tension and the minimum required cable strength increase as we move
inward towards the geosynchronous satellite. The geosynchronous satellite maintains its
orbit regardless of the cable. At this orbit, the outward pull of the counterweight and its
part of the cable is balanced by the inward force due to the weight of the inner part of
the cable plus the tension F, at the point of attachment to the earth. The inner part of
the cable orbits more slowly than an untethered satellite in a circular orbit at the same
radius and would fall to earth if the cable were to break. At the surface of the earth, only
F, remains. Therefore, the required cable strength and thickness decrease as we move
away in either direction from the geosynchronous satellite.

Part 4:  To simulate g = 9.8 m/s? at a radius of 1 km, the space colony needs to rotate
at an angular velocity w = /(g/R) = 0.099 radians/sec. Thus the counterweight radius
R, needed for v, = 3 km/sis R. = v./w = 30 km.

I-C Part (1): For Allo and his bike to stay on the track at the top of the loop, we
equate
(T + vf)start = (T + V)top of loop

or
mgh' = %mvfnin +2mgR
where vy, is the speed at the top of the loop; the minimum needed to stay on the track
corresponds to v2; /R = g. Thus
mgh' = %ng +2mgR or h =5R/2

Part (2): On the ramp
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Reinserting into Eq. (3), we get
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Part (3): We are told to start from the above expression for §; thus
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and the time taken to reach the bottom is
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where s = s’ when h = Ah'. In this problem, we are told that the ramp has a uniform
slope, i.e., h = as where a is constant; thus dh/ds = a and b’ = as’. Consequently,
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The integral term is
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where the minus sign signifies that s decreases with time. Thus,

! 2 !
At#wz %(HL)
ga? g a2




