Sample Solutions — 1998 Classical Mechanics Homework Set IV

IV—A. This problem involves only manipulation of the Newtonian gravitational potential
—GMm/R. Suppose that the satellite is oriented so that the line joining the center of
the two spheres, a distance 2d, makes an angle o with the line to the center of the body
which is being orbited. It is important to define the angle o such that the center of mass
of the satellite does not move when « is varied:
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It can be seen that either sina = 0 or cosa = 0 results in 0V/0a = 0. Checking the
second derivatives, we find that the orientation o = 0 corresponds to a minimum in V/,
while the orientation o = 90° maximizes V. Therefore, we conclude that gravity tends to
automatically stabilize the satellite with its long axis pointing towards the center of the
body being orbited.

ov —GMm[ (—dsin ) dsina ] .

IV-B. We follow the standard procedure to make this a one-dimensional problem, i.e.,
add the centrifugal term to the central force or potential. Thus
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We have taken V'(o0) = 0, as usual. The sketch illustrates the qualitative form of this
1/r* potential.

The given spiral path with uniform pitch ¢ determines what the form of the force must
be; to find that form, we just need to take the 2nd time derivative:
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Thus, mi = f' = —2¢%0>/mr® is the same form as eq. (1) above, proving that a spiral

path r = ro + (d/+/2)0 leads to the given force.
The total energy is E =T, + Ty +V = mr?/2+ V', and for a particle in a spiral with

uniform pitch, we have seen that
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Thus we are led to the conclusion that E = 0 if ¢? = d?/2, whereas if ¢ # d?/2, we have
already shown that a spiral of uniform pitch is not a solution. Summarizing this, plus

what we can tell from the form of the potential V', we conclude
If E =0, motion is unbounded [and path is spiral r = 9 + (d/+/2)8)].

If £ > 0, motion is unbounded.
If F < 0, motion is bounded.

IV—C. Once again, the given path determines what form of the force or potential must

have; to find that form, we just need to differentiate:
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Using total energy E =T, + T+ V
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This agrees with the given form of the potential if we choose our zero reference position
for potential energy such that E = 0, and therefore, one of the exponents n or m must

be —3 and the other must be —2.



IV-D. (1) Let the planet be a distance r from the center of the star. We apply
Gauss’ law to find the gravitational field at r due to the dust cloud. Thus, the attractive

gravitational force f = —GmM,y /r? consists of two terms:
Gm 4
f(r) =~ 7 (M + 57?7“3,0)

Since we are not given the radius of the star (let’s call it Ry), this approximation works
best when R, < r and/or when p < M/R3.

(2) Our standard expression for the one-dimensional treatment of central force problems
is P
mit = f'(r) = f(r) + — .
F) = F0)+

For a circular orbit at radius r = R, ¥ = 0 and so we obtain the desired polynomial

expression
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(3) The left-hand side of eq. (2) is the effective one-dimensional force f'(R) = 0 on the
planet in the circular orbit. The corresponding effective potential is related to this force
by f'(R) = —(0V'/0r),—r = 0. We know that there is a minimum in V' at » = R, so we
can define a new variable s = r — R and expand in a Taylor series in s:
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Next we write the total energy E (a constant) in terms of
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Now differentiate with respect to time:
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Thus we find that small deviations are described by simple harmonic motion in s with

angular frequency 7
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Now differentiate f',i.e. the left-hand side of eq. (2), then use eq. (2) again to eliminate
the first term:
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The approximation above comes from the fact that eq. (2), i.e., f' = 0, corresponds to a
circular orbit, and so can be used only in the case of small deviations from a circle.
Let us denote the orbital angular frequency by w, = 8 = £/mR?; then from eq. (3) we

have
ws = \Jw? + 4mpG .

First consider the approximation ws; = w,. In the course of one orbital revolution, the
radial distance varies sinusoidally between R + sp.x and R — spax and then back again.
This is the same as the situation that led us to the derivation of an orbit

% = C[1 +ecos(f — 6)]

(see lecture notes or textbook). Since the total energy is £ < 0, this corresponds to an
elliptic orbit. An alternative “qualitative” argument uses the fact that a circular orbit is
equivalent to a superposition of two perpendicular simple harmonic oscillators with equal
frequency and amplitude. If the radial oscillation also has this same frequency, it is simply
equivalent to changing the relative amplitude of the two perpendicular simple harmonic
oscillators. The superposition of two perpendicular oscillators with different amplitude is
well-known to be an ellipse.

Because of the small size of the p term, wy is just slightly larger than w,. Therefore the
major (and minor) axes of the ellipse, instead of remaining fixed in space, rotate through
a small angle for every orbital revolution. Since wy is a little larger (= shorter period),
the radial motion completes its cycle a little before # has finished its revolution, resulting
in a “backward” or opposite sign precession.



