Sample Solutions — 1998 Classical Mechanics Homework Set VI

VI-A. See lecture notes.

VI-B. Let z, y, z be a set of coordinates fixed to the plate, with its origin at the
plate’s center. The z axis is perpendicular to the plane of the plate. We are free to
orient our z and y axes within the plane of the plate such that the vector w lies in the
z — z plane. (Another way to say it is that the vector w and the z axis define a plane
that rotates as the plate rotates, and we choose our z axis so that it lies in this plane.)

The circular disc of radius R has moments I,, = I, = mR?/4 about its center.
Therefore, using the perpendicular axis theorem,

The vector w and its derivative can be written in this coordinate system as

w = (wsiny, 0, wcos)
& = (0,0, 0)

(since w and v are both constant).
Euler’s equations in the z, y, z frame are

Lywtoy — wyws(Iyy — L) = N,
Lywy —wwy(1, — I;z) = N,
L0, —wywy(Ipy — Iyy) = N,
Thus, N, = N, =0 and
N, = —w’siny cos¢mR2(% — i)

= —%mRQw2 sin cos Y

This torque lies in the plane of the plate, and its direction is at 90° to the plane defined
by z and w. Thus, the torque direction must rotate as the disc rotates.

V-C. (1) Let w;, we and ws be the principal axes corresponding to the moments
I, Iy and I3, respectively. Then, Euler’s equations can be written in the form
Ildjl — CUQCU?,([Q — 13) =0
0
Igd)g — w1w2<[1 — [2) =0

[262)2 — wgwl(lg — [1)



First consider the case where the spin initially is close to being aligned with the w;
axis. Then the product wows is very small and the first Euler eq. = w; is approximately

constant. Therefore
_waw (I3 = 1)

Wy =
I
and the approximate constancy of w; allows us to write
. .wi(l3—h)
Wy N wyg———=
I
2
wi(ls — ) (11 — 1)
. 1
o AL )

The same reasoning also implies

20[, — L) ([, — I
d&3mw3[w1(1 1.321).2(3 1)]

(2)

Note that the terms in square brackets are both negative, since Iy < Iy < I3. There-
fore, egs. (1) and (2) tell us that simple harmonic oscillation takes place in the
magnitudes of wy and ws, and the motion remains predominantly a rotation about the
wy axis.

Next, consider the case where the spin is almost along ws. This can be described by
exactly the same equations if we just switch our ordering convention to I; > Iy > I;.
In this case, the square bracket terms are still negative and so the conclusion is the
same.

Finally, consider the case where the spin is almost along ws. Now we find that
initially,

[ W2(Iy — I)(I; — I5) ]

o w wi (1 ]3;( 1 — Ip)

i 113 ]

[ W2(I; — L) (I, — I2)]

and W3 A ws wa(h 1.321).1( 2 3)

Now the terms in square brackets are both positive, which implies a diverging solution
with a growing magnitude of angular frequency in the other two directions w; and ws.

(2) When I; < I, = I3, we see that the square bracket terms either remain negative
or become zero. Therefore, unstable rotation is not observed when Iy = I3.



VI-D. An obvious, but somewhat lengthy, approach to this problem is to calculate
directly the moment of inertia I; of a cube of sides £ about its space diagonal; the
answer, as obtained in an example worked in class is I; = M¢?/6. Then do the same

for an axis through the center of two opposite faces; the answer again is Iy = M¢?/6.
Therefore, I, = I.

A shorter method is as follows. Consider a Cartesian coordinate system with its
origin at the center of the cube and axes parallel to the sides. We are told that
I, = I, = I, = Iy. Also, the off-diagonal inertia tensor elements like I,,, I,,, I,
are all zero. This can be seen either from direct calculation, or just by noting from
symmetry arguments that the x, y and z axes are principal axes.

In general, once the full inertia tensor I is known, the moment of inertia I about
any axis

n = (ai, £j, k)

is obtained from [see lecture notes or egs. (5-19) and (5-32) in Goldstein]

I = A-1-h
I = &Pl + 8L, + 921, + 2081, + 2871, + 2val,,
= I+ B2+, (3)

We are interested in the case where the unit vector n = n; is along a space diagonal.
Symmetry tells us that the vector pointing from the cube’s center to any corner will give
the same result. Therefore, let us take the corner where all coordinates are positive:

. 1
n; = ——
1 /3

Thus o? + 82 +~% =1 in eq. (3) above and consequently /; = Ij.

(i? j7 k) *

VI-E. In all three cases, the axis of torsional oscillation passes through the center
of the cube. As illustrated by problem D above, the moment of inertia of the cube
about all three axes is the same. In fact, the rotational inertia of a cube about any
axis through its center is fully described by the inertia tensor [;;, = %M %81, This is
identical to the inertia tensor for a sphere of radius R = 1/(5/12) £. In the language of
inertia ellipsoids (see Goldstein page 202), the inertia ellipsoid is a sphere for any body
where all three principal moments are equal. Thus, the periods of torsional oscillation
are the same in all three cases.



