PHY 6/75101 December 1998

Classical Mechanics — Homework X

This homework is due Friday December 11.

A. Consider a particle of mass m which moves in two dimensions in a potential well. Let x_1 and x_2 be Cartesian coordinates with their origin at the point of lowest potential. The well is termed *isotropic* if the potential is the same for all directions in the (x_1, x_2) plane (e.g., for small oscillations, an isotropic potential must be a paraboloid of revolution).

(1) First consider an anisotropic oscillator where the potential is $V = \frac{1}{2}k(x_1^2 + x_2^2) + k'x_1x_2$. Find the eigenfrequencies and normal coordinates of this system, and describe each normal mode of vibration.

(2) Use a qualitative physics-based argument to write down two independent constants of the motion. Verify your choice using the Poisson bracket equation

$$\dot{u} = [u, H] + \frac{\partial u}{\partial t},$$

where u = u(q, p, t), and H is the Hamiltonian.

(3) The oscillator becomes *isotropic* if k' = 0. Again use a qualitative physics-based argument to write down an additional independent constant of the motion. Again verify your choice using the Poisson bracket equation above.

B. (1) Verify the Poisson bracket relationship

$$[L_i, L_j] = \epsilon_{ijk} L_k$$

among the Cartesian components of angular momentum for a spherical pendulum (see eq. 9-128 in Goldstein).

- (2) Likewise, verify $[p_{\theta}, p_{\phi}] = 0$ for the spherical pendulum.
- (3) The mathematical machinery of Poisson brackets evidently tells us that some perpendicular momentum components are valid canonical momenta (e.g., p_{θ} and p_{ϕ}), while others are not (e.g., the Cartesian components of angular momentum above). Explain the physics behind this.
- C. Suppose that a system with a time-independent Hamiltonian $H_0(q, p)$ is modified such that the Hamiltonian becomes

$$H = H_0(q, p) - \epsilon q \sin \omega t,$$

where ϵ and ω are known constants.

- (1) Apply Hamilton's canonical equations of motion to the modified system.
- (2) Use a Canonical Transformation generating function F_2 to find a new Hamiltonian K and new canonical variables Q, P for the modified system such that $K(Q, P) = H_0(q, p)$.
- (3) Verify that the transformed quantities K, Q, P satisfy Hamilton's canonical equations of motion.
- (4) Suggest one possible physical interpretation for the term which modifies H_0 .
- **D.** A projectile is fired at an angle α measured from the horizontal, with initial velocity v_0 . Take x = z = 0 at time t = 0. Use the Hamilton-Jacobi technique to determine x(t), z(t) and z(x).