Sample Solutions — Classical Mechanics Homework Set 11

A. Goldstein Exercise 1-1}:

We are given L' = L + F', where F = F(q1,.---gn,t). Therefore,
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Inserting L = L' — F' into Lagrange’s eq.:
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Because the 2nd and 4th terms cancel, we have shown that L' also satisfies La-
grange’s eq.

B. Goldstein Erercise 1-17:
In addition, comment on the physical meaning of the two equations you obtain, and

use them to describe (in words) at least two different special cases of the possible
motion.

For diagrams, and setup of Lagrangian, see lecture notes.
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Lagrange’s eq. for # and ¢ =
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Therefore, the equations of motion in simplest form are:
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If we multiply the equation on the left across by the appropriate constants, the
first two terms are just the rate of change of momentum or angular momentum,
and the third term is the force or torque due to gravity. This is Newton’s second
law. Alternatively, the three terms can be integrated in which case the first two
become the kinetic energy of the pendulum, and the third term is its potential
energy. That form of course leads to 7'+ V' = constant.

The second equation (on the right) resulted from setting equal to zero the d/dt of
Py = mr sin? # ¢. This quantity Py is angular momentum about the vertical axis.
Therefore, the second equation reflects conservation of this component of angular
momentum. See the discussion of cyclic coordinates in Chapter 2 for more about
this topic.

Special case #1: ¢ = 0, then 0 = —gsinf /ry, a simple pendulum which
undergoes one-dimensional simple harmonic motion for small deflections.

Special case #2: 6 = constant; then ¢*> = g/ (rgcosf), a conical pendulum
where the mass follows a circular path in the horizontal plane, with uniform angular
velocity .

Goldstein FEzercise 1-22:

Apply eq. (1-70) in Goldstein to a single vertical coordinate z:
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Here L=T -V = %méQ —mgz and F = %k,éQ . Thus, equation of motion is
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where we have changed notation to v = z. We can now integrate to get:
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Using our initial condition of falling from rest, we get C' =1In g and so
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For ¢t — oo, the object falls at a terminal speed v, = mg/k.



D. A particle of mass m is attached to a string which passes through a hole in a table
(without friction) and is then fastened to a spring with a force constant k. When
the particle is at the hole, the spring is unstretched. Using Lagrange’s equations,
find the equations of motion in polar coordinates and identify any constants of the
motion. Consider only cases where the particle moves on the surface of the table.
What is the shape of the path of the particle?

We position our origin at the hole in the table. The Lagrangian is
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which tells us that angular momentum about the vertical axis, mr2f = pg =constant.
(This conclusion could be reached from the outset by noting that 6 is cyclic.) Also,

Lagrange’s eq. for r leads to the other eq. of motion in terms of r only:
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It is clear a prior: that the energy 7'+ V' is also constant.

A relatively easy way to identify the shape of the path in this case is to rewrite
the Lagrangian in cartesian coordinates:
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Then Lagrange’s equations == ma + kxz = 0 and my + ky = 0. We recognize

these as the equations for simple harmonic motion. Note that the frequency of
oscillation, which is determined by w? = k/m, is the same for x and y. See
any text on introductory physics for proof that the resultant of two perpendicular
simple harmonic oscillators is an ellipse if both oscillate at the same frequency.

In Chapter 3, you can find alternative ways to show that a particle moving under
an attractive central force, as supplied by the spring, follows an elliptic path.



