Sample Solutions — Classical Mechanics Homework Set IV

A. Goldstein Erxercise 3-2:
The possible ranges of E for each type of motion do not need to be given explicitly
in terms of the constants a, k,l, and m.

The expression V' = (—k/r)e”* is familiar in atomic physics, where it is called
the Screened Coulomb Potential. The —k/r part represents the attractive Coulomb
potential felt by a negative charge due to the nucleus of a neutral atom. At distances
r comparable to the radius of the atom and beyond, the electrons’ electric field
cancels the nuclear electric field, hence the exponential term.

The equivalent one-dimensional potential is
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To get an idea about the shape of this potential, note first of all that V' ~ 1?/2mr?
for both ar > 1 and ar < 1. Next, the stationary points tell us something about
the “in-between” region:
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This is a transcendental equation, and is best solved numerically. For some combi-
nations of constants, the term on the right can be taken as constant and effectively
we have a quadratic equation in r with two roots, r; and r5. In this limit, it is
straightforward to show that the smaller of these corresponds to a minimum in V'
and the other to a maximum in V'. Hence, a V' shape resembling the solid curve
in the figure below is possible.

The value of angular momentum [ determines the radius r; where a stable orbit
might be possible. The constant 1/a determines the radius where the screening
term becomes important. If 1/a is made smaller and smaller in comparison to ry,
numerical experimentation reveals that the minimum in V' at r; becomes more
shallow and shifts above V' = 0; for very small screening radius parameters 1/a,
the V' curves are dominated by the [2/2mr? term for all 7 and resemble the dotted
curves in the figure.

e For the dotted equivalent potentials, only unbounded orbits are possible.
e In the case of the solid curve,

— for a particle with total energy E > Ey = V’(r3), the motion is unbounded;



— for a particle with total energy E' = Fj5, an unstable circular orbit at radius
ro is possible;

— for a particle with E5 > E > 0 and r > ry, its motion is unbounded;

— for a particle with £ > E > E; and r < ry, it will move in a stable
bounded orbit;

— and for a particle with total energy F = F1, it will have a stable circular
orbit at radius r;.
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Small radial oscillations about a stable circular orbit at r; take place according to
(see Goldstein’s Appendix A)
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The orbiting body undergoes one cycle of radial oscillation for SAf = 27. The
period 7o for this oscillation is related to the body’s tangential speed v in the

circular orbit by
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For any circular orbit, mv?/r = f, so we can write
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Finally, we need to substitute f = —dV/dr = (a + 1/r)V (see eq. (1) above) and
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In chapter 6, we consider small oscillations in more detail.




B. Goldstein Exercise 3—14:

We begin from the following eq. for u = 1/r [see lecture notes or Goldstein (3-34b)],
which holds for any central potential V:
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We are given V = —ku + hu?, and so dV/du = —k + 2hu. Our differential eq. for
the orbit thus becomes:
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The above takes on the form of the familiar Simple Harmonic Oscillator equation
d?y/df? + w2y = 0 if we identify
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The SHO solution is y = yo cos(wh — 6y), which we can now write in the form:
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We don’t need to worry about writing down the explicit form for the eccentricity
e'; as we will see later, it isn’t needed in this problem. If we set A = 0, notice that
the above reduces (as required) to the standard Kepler orbit formula:
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Eq. (2) has the form of our standard Kepler orbit if we transform to a coordinate
system where ' = wf. What is the physical meaning of this transformation?

The condition to return to the same point on the orbit in the transformed coordinate
is that €' should change by an amount A#' = 27, or that A = 27 /w. The quantity
(A@ — A#) is the difference in phase between one complete orbit in the primed
coordinates (where the effect of the h term in the potential is cancelled) and one
complete orbit in the original coordinate system. In other words, the primed system
precesses in step with the orbit described by Eq. (2), and in this primed system,
the orbit looks like a normal Keplerian ellipse. Since precession causes a change of
phase angle (Af’ — Af) in one orbit, over a time period 7, the rate of precession is
0= A0 — A0 2m—2m/w  27m(1—1/w)
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Now we use the fact that A is small to write 1/w &~ 1 — mh/[?, and so we get
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From lecture notes or Goldstein eq. (3-63), we know that [? = mka(1 — €?) for a
Kepler potential; for A # 0, eq. (2) above implies that [ 4+ 2mh = mka(1 — €”).
For the purpose of evaluating €2, the added 2mh term is completely negligible, so

we end up with
21

or about 40 seconds of arc per century. (Note that there are 60 x 60 seconds of
arc in a degree.) The total observed rate of precession of Mercury’s orbit is 574
seconds of arc per century, but most of this can be explained by the gravitational
force from other planets. The A term in the Sun’s potential was orginally intended
to describe the small remaining 43" per century which cannot be explained by
Newtonian mechanics. In fact, general relativity accurately accounts for this deficit
in the rate of precession of Mercury’s perihelion.

Q= = 1.9 x 107° radians/year

Goldstein Ezxercise 3—16:

We begin from Kepler’s 3rd law:

2ma’/? ~ 2m(r)3/2
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This is a good approximation in the present case; the small eccentricity of the orbits

of both Moon and Earth allow us to write the mean radius (r) ~ a, and M +m ~ M
because the Earth is very much more massive than the Moon, and also the Sun is
very much more massive than the Earth. Thus
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D.

In homework I-D, we considered the problem of a rocket which left the earth by
accelerating straight up (antiparallel to g) until it reached earth escape velocity. A
more energy-efficient approach to interplanetary travel is to coast from one orbit
to another. Suppose that a space vehicle is already in orbit around the sun in the
same orbit as the earth, semimajor axis ap = 150 million km, and is far enough
from the earth that the Sun’s gravity dominates. Using the approzrimation that the
eccentricity of the orbit of both Earth and Mars is roughly zero, and taking the orbits
to be coplanar, calculate the minimum increase in velocity needed to enter an elliptic
orbit which intersects the orbit of Mars, ayr = 228 million km. Also calculate the
duration of the journey. Fxpress answers in terms of ag, ay, and periods T, and
also give numerical values.
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There are many elliptic orbits which intersect the orbit of both Earth and Mars.
However, the orbit is made unique by requiring that the energy be a minimum (or
equivalently, that the increase in velocity upon leaving Earth orbit be a minimum).
Then the required elliptic orbit must intersect Earth orbit at its closest point to the
Sun (point A in the diagram) and intersect Mars orbit at its farthest point from the
Sun (point B in the diagram). This elliptic transfer orbit thus has a semimajor axis
a; = (ag + anr) /2.

Let vy be the orbital speed in the Earth’s orbit, and let Av be the extra speed
needed to enter the transfer orbit. We use eq. (3-61): a = —k/2FE to write
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In the vehicle’s initial circular orbit, the radial part of the kinetic energy is zero, the
centrifugal force is mv3 /ag = k/a% and so
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This is almost the expression we were asked for, except we need to substitute vy =
2mag /TR, where Tg is the Earth’s period, to get
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Notice that this would typically require one modern rocket stage to burn less than
half its fuel.

The duration T of the journey can be most easily obtained from Kepler’s 3rd law,
which gives us 7, the period of the transfer orbit:
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