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Abstract—On the basis of data on the P33 amplitude from various partial-wave analyses of elastic πN
scattering, the pole characteristics of the ∆(1232) resonance are determined within the resonance model.
An approximate analytic formula that relates the residue to the background is obtained. Estimates confirm
that the nonresonance part of the phase shift is small and differs significantly from the results of the
calculations within the current algebra and the approach of effective Lagrangians. This contradiction
is removed in a modified resonance-model version developed on the basis of taking into account the
quadratic term in the expansion of the Jost function in a series at the pole point. It is shown that
the coordinates of the pole and the phase shift of the residue change only slightly in relation to the
results within the traditional model, but that the absolute value of the residue increases by about 20%.
c© 2002 MAIK “Nauka/Interperiodica”.


1. INTRODUCTION


Although elastic πN scattering has been studied
for a long time and is thought to be well understood,
there is a significant scatter of the results for the
absolute value and the phase shift of the residue at
the pole of the P33-wave amplitude in the ∆(1232)-
resonance region (Table 1, [1, 2]). In principle, this
can be due to modifications in the experimental basis,
its qualitative and quantitative improvements. An-
other reason behind this can be associated with the
presence of amodel ambiguity in the analytic descrip-
tion of the amplitude. This is manifested significantly
in the extrapolation of the amplitude toward the pole
point occurring beyond the physical region. As to the
P33 amplitude itself, it is well described within the res-
onance model [3, 4], where an additional background
contribution is taken into account along with the
standard Breit–Wigner expression. From the results
of the calculations presented in [4], it follows that the
magnitude of this background is moderate and that
the corresponding phase shift at the resonance point
is about 3◦ to 4◦. However, this estimate contradicts
the results of the calculations within the current alge-
bra and the approach of effective Lagrangians, where
the background phase shift at the resonance proves to
be about 15◦ [5, 6].


In order to clarify these questions, the resonance
and the pole characteristics of the P33-wave ampli-
tude are calculated here within a realistic resonance
model by using data from a few partial-wave analyses
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of elastic πN scattering. The relation between the
residues of the total and the resonance amplitude is
derived in an analytic form with allowance for the
background, and the resonance model is modified by
taking into account the second-order correction in
the expansion of the Jost function in the vicinity of
the pole of the amplitude.


2. AMPLITUDE OF THE P33 WAVE
IN THE ∆(1232)-RESONANCE REGION


2.1. Residue in the Resonance Model
In the region of the excitation of the first nucleon


resonance, the description of the P33-wave amplitude
for πN scattering is simplified because this amplitude
is elastic. In the resonance model, the relevant S-
matrix element depending on the total energy W (in
the с.m. frame) has the factorized form


S(W ) = SB(W )SR(W ), (1)


where the quantities SB and SR correspond to the
background and the resonance, respectively; in the
physical region, they are determined by correspond-
ing real phase shifts,


S = e2iδ , SB = e2iδB , SR = e2iδR . (2)


Here, the rule of phase summation is


δ(W ) = δB(W ) + δR(W ). (3)


In the complex plane ofW , the quantities SB and
SR are given by


SB(W ) =
1 + iB(W )
1− iB(W )


, (4a)
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Table 1. Pole parameters of the P33-wave amplitude [1]


Data MP , MeV ΓP /2, MeV |res|, MeV ϕ(res), deg


Cutkosky 80 1210± 1 53± 2 50± 1 −47± 1


Arndt 91 1210 50 52 −31


Hoehler 93 1209 50 50 −48


Arndt 95 1211 50 38 −22


Arndt 99a 1211 51 39 −23


Arndt 99b 1211 50 47 −47


Note: The symbols |res| and ϕ(res) stand for, respectively, the absolute value and the phase shift of the residue at the pole point
MP − iΓP /2 in the complex plane of the total energyW . The values in the two lower rows correspond to versions of the treatment of
the data from the analysis reported in [2] (private communication of Arndt).


SR(W ) =
W −MR − iΓ(W )/2
W −MR + iΓ(W )/2


. (4b)


It is assumed that the background functionB(W )
introduced above and the width Γ(W ) satisfy the
conditions B(W ) = B∗(W ∗) and Γ(W ) = Γ∗(W ∗),
so that, in the physical region, B(W ) and Γ(W ) are
real and are related to the phase shifts δB and δR as


tan δB(W ) = B(W ), (5a)


tan δR(W ) =
Γ(W )/2
MR −W


, (5b)


where MR is the resonance mass. From Eq. (4b), it
can be seen that, at the W values that satisfy the
equation


W −MR + iΓ(W ) = 0, (6)


the function SR has a pole. According to scattering
theory, the root of Eq. (6), WP = MP − iΓP/2, that
lies in the fourth quadrant of the complex plane of
W at positive values of MP and ΓP corresponds to
a resonance. Considering that the expansion of the
denominator on the right-hand side of Eq. (4b) in a
series in powers of (W −WP ) begins from the linear
term and retaining only this term in the vicinity of the
pole, we can recast (4b) into the form


SR(W ) ∼=
W −MR − iΓ(W )/2


(1 + iΓ′(WP )/2)(W −WP )
, (7)


where Γ′(WP ) is the value of the derivative
dΓ(W )/dW at the pole point. From Eqs. (6) and (7),
we can obtain an exact formula for the residue:


res(SR) =
−iΓ(WP )


1 + iΓ′(WP )/2
. (8)


We will now consider that the numerator on the
right-hand side of (7) vanishes at the point W ∗P =
MP + iΓP /2, which is conjugate to the pole, and
expand it in a series at this point. Retaining only the


first term in this expansion and assuming that this
approximation can be used at the pole as well, we find
that, in the unipolar approximation, the resonance S-
matrix element has the form


SR(W ) ∼=
1− iΓ′(W ∗P )/2
1 + iΓ′(WP )/2


W −MP − iΓP/2
W −MP + iΓP/2


, (9)


whence we obtain an approximate expression for the
residue:


res(SR) ∼= −iΓP
1− iΓ′(W ∗P )/2
1 + iΓ′(WP )/2


. (10)


For expression (10) to be correct, it is obviously
necessary that the distance ΓP between W ∗P and
the pole not be overly large and that the energy de-
pendence of the width Γ(W ) be sufficiently smooth.
Comparing (8) and (10), we also obtain


Γ(WP )/ΓP ∼= 1− iΓ′(W ∗P )/2. (11)


In particular, the equality Γ(WP ) = ΓP holds for
an energy-independent width.


The residue of the amplitude T ≡ (S − 1)/2i is
usually presented in analyses. It follows from (10) that
the absolute value and the phase shift of the residue of
the resonance amplitude are


|res(TR)| ∼= ΓP /2, (12)


ϕ(res(TR)) = 2ϕ0, (13)


where


ϕ0
∼= arg(1− iΓ′(W ∗P )/2) (14)


= −arg(1 + iΓ′(WP )/2).


From (13) and (14), it can be seen that the phase
shift of the residue is equal to zero if the width is
independent of energy.


In general, the approximate result for the residue
of the amplitude with allowance for the background
has the form (it should be noted that the presence of


PHYSICS OF ATOMIC NUCLEI Vol. 65 No. 3 2002







DETERMINATION OF THE PARAMETERS OF THE ∆(1232) RESONANCE 541


a background does not affect the coordinates of the
pole)


|res(T )| ∼= (ΓP /2)|SB(WP )|, (15)


ϕ(res(T )) ∼= 2ϕ0 + arg(SB). (16)


The second term on the right-hand side of (16)
determines the contribution of the background to the
phase shift of the residue.


2.2. Inclusion of the Second-Order Correction
in the Expansion of the Jost Function


As a matter of fact, the above approximation is
a starting point for constructing, in a standard way,
the resonance model, where only the first term in the
expansion of the Jost function in a power series in the
vicinity of the pole point is taken into account (see, for
example, [7]). By introducing the parameter c defined
by the ratio of the coefficients of the second and the
first term in this expansion, we can take into account
the second-order correction on the right-hand side of
(9) by making the substitution


W −MP − iΓP /2
W −MP + iΓP /2


→ W −MP − iΓP/2 + c∗(W −MP − iΓP /2)2


W −MP + iΓP /2 + c(W −MP + iΓP/2)2
.


Upon going over to the model and introducing
the energy-dependent width in (4b), there arises the
additional factor


Sc(W ) =
1 + c∗(W −MR − iΓ(W )/2)
1 + c(W −MR + iΓ(W )/2)


. (17)


For the corresponding phase shift δc determined by
the relation Sc(W ) = e2iδc to vanish as we approach
the threshold, the constant c must be real. In this
case, the modification of the model via the inclusion
of the second-order term in the expansion of the Jost
function generates, in the phase shift, the additional
contribution given by


tan δc = − cΓ(W )/2
1 + c(W −MR)


. (18)


Thus, the total phase shift is equal to the sum


δ = δB + δR + δc, (19)


while the expressions for the absolute value of the
residue and for its phase shift [(15) and (16), respec-
tively] are modified to become


|res(T )| ∼= (ΓP /2)|SB(WP )||1− icΓ(WP )|, (20)


ϕ(res(T )) ∼= 2ϕ0 (21)


+ arg(SB(WP )) + arg(1− icΓ(WP )).
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Fig. 1. Energy dependence of the total phase shift δ and of
its resonance and background parts according to the cal-
culations within the standard resonance model atMR =
1235.14 MeV, ΓR = 123.36 MeV, r = 0.97520 fm, and
a = 0.02822 fm3: (a) results of the calculations for δ
and δR (curves 1 and 2, respectively) and data of the
SM99 partial-wave analysis (points); (b) results of the
calculations for the background phase shift δB and for the
difference of δR and the values of this quantity at r = 0
(curves 1 and 2, respectively).


3. NUMERICAL CALCULATIONS
3.1. Resonance Model


The width was calculated here by the formula


Γ(W ) = ΓR(q/qR)3R(W ), (22)


which takes into account the threshold dependence
and which involves the c.m. particle momentum q ≡
q(W ); its value at W = MR, qR; the quantity ΓR =
Γ(MR); and the factor R(W ) correcting the energy
dependence of the width,


R(W ) = (1 + q2
Rr


2)/(1 + q2r2), (23)


with r being a phenomenological parameter. The
background was described with the aid of Eqs. (4а)
and (5а), where B(W ) was parametrized as


B(W ) = aq3(W ). (24)


The inclusion of the additional factor 2MR/(MR +
W ) in expression (22) for the width leads to the
relativistic version of the model, with the resonance
amplitude being given by


TR(W ) =
Γ(W )WR


M2
R −W 2 − iΓ(W )MR


. (25)


However, the calculations have revealed that, in
this case, the results for the resonance and pole pa-
rameters remain virtually unchanged. For this reason,
we will employ below only the nonrelativistic formu-
lation of the model.
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Fig. 2. Resonance and pole parameters according to the
data of the (boxes) SM99, (triangles) SM99s, and (cir-
cles) KA84 partial-wave analyses in the energy intervals
of widths 30, 60, and 80 MeV, respectively, their centers
being plotted along the abscissa.


3.2. Fitting Data on the Phase Shift of the P33


Amplitude


The model parameters MR, ΓR, r, and a were
determined from the data on the phase shift of the
P33 wave in the region of W from the threshold
to 1350 MeV that were obtained with a step of
5 MeV from the SAID system available through
the Internet (http://said.phys.vt.edu). It includes the
parametrized (SM99) and the energy-independent
(SM99s) version of the partial-wave analysis reported
in [2], its preceding versions SM90 [8] and SM95
[9], and the КP80 partial-wave analysis [10] and its
smoothed version КА84. Upon fitting the parameters,
the resonance model makes it possible to obtain a
good description of the data on δ in all cases. By way
of example, the result of a fit to data of the SM99
partial-wave analysis is presented in Fig. 1a. Fig-
ure 1b illustrates the role that the empirical parameter
r plays in the formation of the resonance contribution.
The background phase shift is positive, taking values
of 2◦ to 3◦ at the resonance point.


The calculations were further performed for the
resonance parameters M0 (the position of the point
where the phase shift takes the value of 90◦) and
Γ0 = 2/(dδ/dW )|W=M0 (the experimental width)
and for the pole parameters—namely, the coordinates
of the pole of the amplitude, the absolute value of the
corresponding residue, and its phase shift ϕ[res ≡
res(T )]. The resonance and pole parameters for the
SM99 partial-wave analysis and for solutions of other


partial-wave analyses are quoted in Table 2. There,
the values of χ2 are of a rather arbitrary character
because, as a rule, the errors in the phase-shift
values are not presented in partial-wave analyses—
in the calculations, the experimental points were
arbitrarily assigned the error values of 0.25◦. The
SM99s (single energy) version, which was imple-
mented for 16 energy values in such a way that a
strong dependence on the experimental data that fell
within the vicinity of each node was preserved, is
the only partial-wave analysis presenting the error
values. The value of χ2 = 65 was obtained from a fit
to this solution, with the overwhelming contribution
to it coming from the point atW = 1180 MeV. Upon
the elimination of this point, χ2 decreased to 27, but
the results for the sought parameters changed only
slightly. Unfortunately, there are only a few points in
the central region, which is of greatest interest.


In order to estimate the effect exerted by individual
groups of experimental points on the formation of
the values of the sought parameters, fits were also
performed for data from specific energy intervals. In
principle, the results obtained in this way must be
compatible if the experimental data are of a very high
quality and if the model used in fitting is adequate. For
the SM99, SM99s, and KA84 partial-wave analyses,
this was so in some cases for energy intervals of
widths 30, 60, and 80 MeV, respectively (Fig. 2). It
can be seen that the region around 1210–1220 MeV
is the most informative. For the SM99 solution, this
test yielded the best result—at the center of the res-
onance distribution, the results for the experimen-
tal mass, the width, and all of the pole parameters
showed the weakest dependence on the choice of
input data interval, errors increasing away from the
center of the distribution. For the energy-independent
SM99s solution and the earlier KA84 solution, there
are pronounced deviations in the central region that
is shown in the graphs, the results losing physical
significance beyond it. In view of this, the resonance
and pole parameters were determined here on the
basis of only data in the central region (1180 < W <
1260 MeV), since this region is the most appropriate
for this purpose. In Table 2, the corresponding results
are presented in the lower row for each of the analyses
considered in the present study. It can be seen that, in
some cases, these results differ from those obtained
from a fit over the entire resonance region, especially
for the phase shift of the residue.


3.3. Approximate Formula for the Residue


The approximate values calculated by formulas
(14)–(16) for the absolute value and the phase shift of
the residue within the standard resonance model are
presented parenthetically in Table 2 under the precise
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Table 2. Resonance and pole parameters of P33-wave amplitude


Data N χ2 M0, MeV Γ0,MeV MP , MeV ΓP /2, MeV |res|, MeV ϕ(res), deg


KР80 27 19.0 1231.0 116.0 1209.2 50.4 52.4 −48.9


(52.9) (−49.9)


* 10 4.2 1230.9 115.4 1210.1 49.5 50.1 −46.2


KA84 55 54.0 1231.2 118.2 1208.7 51.4 53.7 −49.8


(54.5) (−51.1)


* 17 7.9 1231.2 116.8 1211.2 50.7 51.3 −43.2


SM90 55 0.25 1231.3 113.9 1210.6 49.9 51.8 −46.8


(51.8) (−46.9)


* 17 0.14 1231.3 114.0 1210.5 49.8 51.6 −46.9


SM95 55 0.18 1231.9 113.0 1211.6 50.1 52.4 −46.0


(52.4) (−46.2)


* 17 0.08 1232.0 113.2 1211.6 50.2 52.5 −46.2


SM99 55 0.15 1232.5 115.2 1211.5 50.8 53.1 −46.9


(53.2) (−47.1)


* 17 0.00 1232.5 115.4 1211.5 50.9 53.2 −47.0


SM99s 16 65.0 1232.1 114.7 1210.9 50.5 52.9 −48.0


(53.6) (−49.2)


SM99s, c 15 27.0 1232.1 115.0 1210.6 50.5 53.0 −48.6


* 5 0.82 1231.9 112.8 1212.9 48.3 47.6 −42.0


Note:N is the number of points; asterisks and the letter “c” correspond to data for 1180 < W < 1260 MeV and data without the point
atW = 1180 MeV, respectively; and the values in parentheses correspond to the calculations of the residue by formulas (14)–(16).


Table 3. Resonance and pole parameters of the P33-wave amplitude within the modified resonance model


Data M0, MeV Γ0,MeV MP , MeV ΓP /2, MeV |res|, MeV ϕ(res), deg


KP80 1231.1 118.8 1206.7 52.2 57.0 −55.4


KA84 1231.4 120.8 1206.4 53.2 58.5 −56.1


SM99 1232.8 118.2 1209.1 53.6 60.7 −53.5


SM99s 1233.3 117.9 1210.4 55.2 64.7 −51.7


results and are in good agreement with them. Also,
there is the possibility of obtaining, within a realistic
model, an independent estimate of the background in
the case where data on the pole parameters of the
resonance are available. Indeed, formula (15) makes
it possible to establish a relation between the relative
value of the residue, y, and the background parameter
a:


y ≡ |res(T )|
ΓP /2


∼=
∣
∣
∣
∣


1 + iaq3(WP )
1− iaq3(WP )


∣
∣
∣
∣
. (26)


Upon solving Eq. (26) for a, the background phase


shift δB(W ) can be calculated with the aid of (24)
and (5а). In order to characterize the background,
the results of such a calculation at W = 1232 MeV
are presented in Fig. 3 versus y from various partial-
wave analyses. It can be seen that the estimates of the
background phase shift at the resonance are grouped
around the values of −15◦, −3◦, and +3◦. In order to
obtain the value of +15◦, which is characteristic of
the approach of effective Lagrangians [4], one must
have the value of y ≈ 1.32, which would correspond
to the absolute value of the residue of about 68 MeV.
The contribution of the background to the phase shift
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Fig. 3. Background phase shift δB at W = 1232 MeV
(curve 1) and contribution of the background to the phase
shift of the residue (curve 2) versus y. Vertical dashed
lines correspond to (y ≈ 0.76) Arndt 95, Arndt 99а
data; (y ≈ 0.94) Cutkosky 80, Arndt 99b data; (y ≈
1.00) Hoehler 93 data; (y ≈ 1.04) SM90 data and the
present estimate based on the SM99 data; and (y ≈ 1.32)
δB(1232) ≈ 15◦.


of the residue also changes considerably with y (see
curve 2 in Fig. 3).


3.4. Modified Resonance Model


Alternatively, the phase shift δ was described with
the aid of formulas (17)–(21), which were derived
within the model developed by taking into account
the second-order term in the expansion of the Jost
function and by introducing a free parameter c. As
before, the background was described with the aid of
(24); however, the empirical factor R(W ) (with the
parameter r), which is typical of the standard model,
was not introduced in expression (22) for the width.
Hence, the modified model involves four adjustable
parameters as before. A good description was ob-
tained for data on δ from all of the partial-wave anal-
yses considered here. By way of example, the result
for the SM99 partial-wave analysis is presented in
Fig. 4a. At the resonance point, we have δB ∼ 23◦ in
this case. However, the correction associated with the
inclusion of the second-order term in the expansion
of the Jost function is negative, and the total non-
resonance phase shift approaches 15◦ (Fig. 4b). This
is in agreement with the estimates obtained within
the approach of effective Lagrangians [6]. By and
large, the curve representing the nonresonance phase
shift is in reasonable agreement with the estimate
based on the current-algebra model [5] as well. The
values of the resonance and pole parameters for the
modified model are presented in Table 3. In relation to
what we have in the standard resonance model, the
coordinates of the pole exhibit moderate shifts that
depend on the choice of analysis, while the absolute
value of the residue appears to be about 20% greater.
The phase shift of the residue increases somewhat. As
to the experimental mass and width, the results for
them are close, on the whole, to traditional values.
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and of its resonance and background parts within the
modified resonance model atMR = 1256.08 MeV, ΓR =
222.44 MeV, a = 0.29143 fm3, and c = 0.34821 fm: (a)
results for δ and δR (curves 1 and 2, respectively) and data
of the SM99 partial-wave analysis (points); (b) results for
δB , δc, and δB + δc (curves 1, 2, and 3, respectively) and
nonresonance phase shift borrowed from [3] (curve 4).


4. CONCLUSIONS


The basic points of the present study and its con-
clusions concerning the P33-wave amplitude for πN
scattering can be briefly formulated as follows:


(i) As a matter of fact, the approximation consid-
ered in Section 2 is the starting point in constructing
the resonance model on the basis of the expansion
of the Jost function in the vicinity of the pole of
the amplitude; the above test has demonstrated its
applicability to calculating the pole parameters. For
the absolute value and the phase shift of the residue,
the analytic expressions (14)–(16) have been derived
in this approximation. From these expressions, it fol-
lows, among other things, that the equality of the
absolute values of the residue and the imaginary pole
coordinate suggests the absence of background and
that the resonance contribution to the phase shift of
the residue is determined by the value of dΓ(W )/dW
at the pole point.


(ii) If the background is described by one pa-
rameter and if the residue and the pole coordinates
are known, the background can be estimated on the
basis of expression (15) without invoking information
about Γ(W ) for this. Estimates of the background
phase shift according to data from various partial-
wave analyses exhibit a wide scatter—from −15◦ to
+3◦ at the resonance point; however, values of about
+15◦, which are characteristic of the calculations
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within the current algebra and the approach of ef-
fective Lagrangians [5, 6], cannot be obtained in this
way.


(iii) A retrospective fit to the data from basic
partial-wave analyses has revealed that the pole pa-
rameters have changed only slightly over the last two
decades. This may indirectly suggest that advances in
experiments studying the ∆(1232)-resonance region
are not as pronounced as might have been expected.


(iv) The present calculations within the con-
strained energy intervals has enabled us to assess the
“energy resolution” of various analyses. For example,
a determination of the resonance and pole parameters
on the basis of the SM99 analysis, which employs the
most comprehensive sample of experimental data, is
possible by using the data from the interval of width
about 30 MeV. For other analyses, the minimal width
of such an interval varies from 60 to 80 MeV, and the
results for the pole parameters change significantly
in response to its shift. This demonstrates that the
region of the first resonance has not yet received
adequately study, so that new systematic and precise
measurements are required for performing a reliable
analysis.


(v) Amodified resonance-model version developed
on the basis of retaining the quadratic term in the
expansion of the Jost function at the pole point has
been considered. A satisfactory description of data
from partial-wave analyses has been obtained. The
resulting estimate of the nonresonance phase shift
complies well with the results of the calculations
within the current algebra and the approach of ef-
fective Lagrangians. In relation to the results within


the traditional model, the absolute value of the residue
undergoes the most pronounced change (an increase
of about 20%).
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