CLASSICAL ELECTRODYNAMICS II

Homework Set 4
February 17, 2020

1. Consider a material in which the half-space with $z>0$ is filled with a medium with permeability μ^{\prime} and dielectric constant ϵ^{\prime}, and the halfspace with $z<0$ is filled with a medium with permeability μ and dielectric constant ϵ. A electromagnetic wave with electric field,

$$
\mathbf{E}=\mathbf{E}_{0} \mathrm{e}^{\mathrm{i}(\mathbf{k} \cdot \mathbf{r}-\omega \mathrm{t})},
$$

is incident on the interface at $z=0$ between the two dielectrics. Consider the case where \mathbf{E} is parallel to the plane of incidence. Then, starting with the boundary conditions on the fields as derived in class, derive expressions for the ratios E_{0}^{\prime} / E_{0} and $E_{0}^{\prime \prime} / E_{0}$, where E_{0}^{\prime} is the amplitude of the electric field of the transmitted wave and $E_{0}^{\prime \prime}$ is the amplitude of electric field of the reflected wave.
2. The reflection and transmission coefficients, R and T, respectively, are defined as

$$
R=\left|\frac{\left(\mathbf{S}^{\prime \prime} \cdot \hat{z}\right)}{(\mathbf{S} \cdot \hat{z})}\right| \quad T=\left|\frac{\left(\mathbf{S}^{\prime} \cdot \hat{z}\right)}{(\mathbf{S} \cdot \hat{z})}\right|
$$

where $\mathbf{S}, \mathbf{S}^{\prime}$, and $\mathbf{S}^{\prime \prime}$ are the time-averaged Poynting vectors for the incident, transmitted, and reflected waves, respectively.
(a) Calculate R and T in terms of the general ratios E_{0}^{\prime} / E_{0} and $E_{0}^{\prime \prime} / E_{0}$.
(b) Next calculate R and T for the particular case described in problem 1.
(c) Finally use your result from part (b) to show that $R+T=1$.

