CLASSICAL ELECTRODYNAMICS II

Homework Set 5
February 24, 2020

1. A circularly polarized plane wave moving in the z direction has a finite extent in the x and y directions. Assuming that the amplitude modulation is slowly varying (the wave is many wavelengths broad), show that the electric and magnetic fields are given approximately by

$$
\begin{aligned}
\mathbf{E}(x, y, z, t) & \approx\left[E_{0}(x, y)(\hat{x} \pm i \hat{y})+\frac{i}{k}\left(\frac{\partial E_{0}}{\partial x} \pm i \frac{\partial E_{0}}{\partial y}\right) \hat{z}\right] \mathrm{e}^{i k z-i \omega t}, \\
\mathbf{B} & \approx \mp i \sqrt{\mu \epsilon} \mathbf{E} .
\end{aligned}
$$

1. In class, I derived the dispersion relation:

$$
\operatorname{Re} \epsilon(\omega)=1+\frac{2}{\pi} P \int_{0}^{\infty} \frac{\omega^{\prime} \operatorname{Im} \epsilon\left(\omega^{\prime}\right)}{\omega^{\prime 2}-\omega^{2}} d \omega^{\prime} .
$$

Use this dispersion relation to calculate $\operatorname{Re} \epsilon(\omega)$, given the imaginary part of $\epsilon(\omega)$ for positive ω as
(a)

$$
\operatorname{Im} \epsilon(\omega)=\lambda\left[\theta\left(\omega-\omega_{1}\right)-\theta\left(\omega-\omega_{2}\right)\right],
$$

where $\omega_{2}>\omega_{1}>0$. Here $\theta(\tau)$ is the step function defined such that $\theta(\tau)=0$ for $\tau<0$ and $\theta(\tau)=1$ for $\tau>0$.
(b) Repeat the calculation using the single-resonance form,

$$
\operatorname{Im} \epsilon(\omega)=\frac{\lambda \gamma \omega}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}} .
$$

