CLASSICAL ELECTRODYNAMICS II

Homework Set 6 March 6, 2020

1. Derive a simple general expression for the vector potential in the radiation zone starting with

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \int G^{(+)}(\mathbf{r},t;\mathbf{r}',t') \mathbf{J}(\mathbf{r}',t') d^3r' dt',$$

where $G^{(+)}(\mathbf{r}, t; \mathbf{r}', t')$ is the retarded (causal) Green function. That is, do not assume $\mathbf{J}(\mathbf{r}, t) = \mathbf{J}(\mathbf{r}) e^{-i\omega t}$.

2. Now consider a rotating electric dipole consisting of two equal and opposite charges q and -q attached to the ends of a rod of length s. The rod rotates counterclockwise in the x-y plane with angular speed $\omega = ck$. The electric dipole moment of the system at t=0 has the value $\mathbf{p}_0=qs\hat{x}$. Use your result from part (a) to calculate $\mathbf{A}(\mathbf{r},t)$ in the radiation zone. (Hint: Recall that $ks \ll 1$.) Show that your result can be put in the complex form:

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi r} p_0 \omega \left(\hat{\phi} - i\hat{\rho} \right) e^{i(\phi - \omega t + kr)},$$

where $\hat{\rho} = \hat{x}\cos\phi + \hat{y}\sin\phi$ and $\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi$.

- 3. Use the complex expression in part (b) to calculate $\mathbf{B}(\mathbf{r},t)$ in the radiation zone.
- 4. Use your result of part (c) to calculate $\mathbf{E}(\mathbf{r},t)$ in the radiation zone.
- 5. Use your results of parts (c) and (d) to determine equations for the real, physical fields \mathbf{E} and \mathbf{B} . Then calculate the instantaneous Poynting vector. Is the instantaneous Poynting vector azimuthally symmetric (independent of ϕ)? If not, are there any observation points where it is independent of ϕ ? Finally, calculate the time-averaged Poynting vector and comment on whether it depends on ϕ or not.
- 6. Lastly calculate the time-averaged power radiated per unit solid angle and make a sketch of the radiation pattern.