CLASSICAL ELECTRODYNAMICS II
 Homework Set 6
 March 6, 2020

1. Derive a simple general expression for the vector potential in the radiation zone starting with

$$
\mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi} \iint G^{(+)}\left(\mathbf{r}, t ; \mathbf{r}^{\prime}, t^{\prime}\right) \mathbf{J}\left(\mathbf{r}^{\prime}, t^{\prime}\right) d^{3} r^{\prime} d t^{\prime}
$$

where $G^{(+)}\left(\mathbf{r}, t ; \mathbf{r}^{\prime}, t^{\prime}\right)$ is the retarded (causal) Green function. That is, do not assume $\mathbf{J}(\mathbf{r}, t)=\mathbf{J}(\mathbf{r}) \mathrm{e}^{-\mathrm{i} \omega t}$.
2. Now consider a rotating electric dipole consisting of two equal and opposite charges q and $-q$ attached to the ends of a rod of length s. The rod rotates counterclockwise in the $x-y$ plane with angular speed $\omega=c k$. The electric dipole moment of the system at $t=0$ has the value $\mathbf{p}_{0}=q s \hat{x}$. Use your result from part (a) to calculate $\mathbf{A}(\mathbf{r}, t)$ in the radiation zone. (Hint: Recall that $k s \ll 1$.) Show that your result can be put in the complex form:

$$
\mathbf{A}(\mathbf{r}, t)=\frac{\mu_{0}}{4 \pi r} p_{0} \omega(\hat{\phi}-\mathrm{i} \hat{\rho}) \mathrm{e}^{\mathrm{i}(\phi-\omega t+k r)},
$$

where $\hat{\rho}=\hat{x} \cos \phi+\hat{y} \sin \phi$ and $\hat{\phi}=-\hat{x} \sin \phi+\hat{y} \cos \phi$.
3. Use the complex expression in part (b) to calculate $\mathbf{B}(\mathbf{r}, t)$ in the radiation zone.
4. Use your result of part (c) to calculate $\mathbf{E}(\mathbf{r}, t)$ in the radiation zone.
5. Use your results of parts (c) and (d) to determine equations for the real, physical fields E and B. Then calculate the instantaneous Poynting vector. Is the instantaneous Poynting vector azimuthally symmetric (independent of ϕ)? If not, are there any observation points where it is independent of ϕ ? Finally, calculate the time-averaged Poynting vector and comment on whether it depends on ϕ or not.
6. Lastly calculate the time-averaged power radiated per unit solid angle and make a sketch of the radiation pattern.

