NUCLEAR PHYSICS

Homework Set 4 October 13, 2006

1. The expectation value of the total kinetic energy of the proton and neutron in the deuteron is given by

$$\langle T \rangle = -\frac{\hbar^2}{2m} \int_0^\infty \psi^* \nabla^2 \psi \ 4\pi r^2 \ dr \ ,$$

where m is the reduced mass of the proton and neutron system and $\psi(r)$ is the deuteron wave function. If only L=0 contributes, we may write $\psi(r)=[u(r)/r]\ Y_{00}$, with $Y_{00}=1/\sqrt{4\pi}$.

(a) Beginning with the expression above for $\langle T \rangle$, show that we may alternatively write

$$\langle T \rangle = rac{\hbar^2}{M} \int_0^\infty \left(rac{du}{dr}
ight)^2 dr \; ,$$

where M is the nucleon mass.

(b) Using a square-well potential, $V(r) = -V_0$ for $r < r_0$ and V(r) = 0 for $r > r_0$, evaluate u(r) in terms of the following parameters:

$$K = \frac{\sqrt{M(V_0 - B)}}{\hbar}, \qquad R = \frac{\hbar}{\sqrt{MB}},$$

where B = 2.22 MeV is the deuteron binding energy.

(c) Show that

$$\langle T \rangle = \frac{\hbar^2 K^2}{M} \left(\frac{r_0}{r_0 + R} \right) .$$

- (d) Evaluate r_0 in fm and $\langle T \rangle$ in MeV assuming that $V_0 = 38.5$ MeV. Do your values justify using the nonrelativistic Schrödinger equation for the deuteron?
- 2. The mass of a nucleus with Z protons and A nucleons is given approximately by the semi-empirical mass formula,

$$M(Z,A) = ZM_p + NM_n - a_v A + a_s A^{2/3} + a_c \frac{Z(Z-1)}{A^{1/3}} + a_a \frac{(Z-N)^2}{A} + \Delta(A) ,$$

where N = A - Z. Show that for large Z and A, the energy released when the nucleus emits an α particle is given by

$$Q_{\alpha} = -4a_v + \frac{8}{3}a_s A^{-1/3} + 4a_c \frac{Z}{A^{1/3}} \left(1 - \frac{Z}{3A} \right) - 4a_a \frac{(N-Z)^2}{A^2} + B_{\alpha} ,$$

where $B_{\alpha}=28.3$ MeV is the α -particle binding energy. (Neglect the pairing term $\Delta(A)$ in your calculation.) Show that the formula for Q_{α} implies that for A>155 a nucleus will be unstable with respect to α decay. (Take Z/A=0.41.)