
5/8/2009

PoincaréPoincaré Invariant ThreeInvariant Three--Body ScatteringBody Scattering
at Intermediate Energiesat Intermediate Energies

Ch. Elster
T. Lin

W. Polyzou, W. Glöckle

Supported by: U.S. DOE, OSC, NERSC





A Few-Body Theorist’s view 
of the Nuclear Chart



•Bound State:  3H  - 3He

•Scattering:  Elastic – Inelastic (Breakup)

•Energy Scale:   keV → MeV → GeV



Challenges in 3N Physics

• Test of nuclear forces in the simplest nuclear 
environment (over a large energy range!)
– Two-body forces
– Genuine three-body forces

• Reaction mechanisms
– Examples: deuteron breakup, (p,n) charge exchange,

exclusive breakup (specific configurations) … 
– Higher Energy: Lorentz vs. Galilean Invariance 
– Check  commonly used approximations (e.g. Glauber approach)



W.P. Abfalterer et al, PRL 81, 57 (1998)



Relativistic Effects at Higher Energies
Computational Challenge:

3N and 4N systems:
• standard treatment based on pw projected momentum 

space successful (3N scattering up to ≈250 MeV) but 
rather tedious

• 2N: jmax=5,   3N: Jmax=25/2  → 200 `channels’
• Computational maximum today:
• 2N: jmax=7,   3N: Jmax=31/2

⇒Solution:
⇒ NO partial wave decomposition of basis statesNO partial wave decomposition of basis states



Roadmap for 3N problem without PW
Scalar NN model  | Realistic NN  Model

• NN scattering + bound state
• 3N bound state
• 3N bound state + 3NF
• 3N scattering:
• Full Faddeev Calculation

– Elastic scattering 
– Below and above break-up
– Break-up

• Poincarė Invariant 
Faddeev Calculations

• NN scattering + deuteron
– Potentials AV18 and Bonn-B

• Break-up in first order:
– (p,n) charge exchange
– Max. Energy  500 MeV
– Lorentz kinematics

• Exact Faddeev Calculation
– NN interactions
– High energy limits



Three-Body Scattering - General

• Transition operator for elastic scattering
U = PG0

-1 + PT
• Transition operator for breakup scattering

U0 = (1 + P)T

T= tP + tG0PT
• Faddeev equation  (Multiple Scattering  Series)

U

U0

L++= PtPtGtPT 0

1st Order in tP

t = v +vg0t =: NN t-matrix P = P12 P23 + P13 P23 ≡ Permutation Operator



The Faddeev Equation in momentum 
space by using Jacobi Variables
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Variables invariant under rotation: 

freedom to choose coordinate system for 
numerical calculation

q system :  z || q

q0 system : z || q0

Variables for 3D Calculation

3 distinct vectors in the problem: q0 q   p

     q  ,  p == qp

5 independent variables:
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Relativistic Faddeev Calculations
• Context: Poincarė Invariant Quantum Mechanics

– Poincarė invariance is exact symmetry, realized by a 
unitary representation of the Poincarė group on a few-
particle Hilbert space   

– Instant form
– Faddeev equations same operator form but different 

ingredients 

• Kinematics
– Lorentz transformations between frames

• Dynamics
– Bakamjian-Thomas Scheme: Mass Operator  M=M0+V 

replaces Hamiltonian H=H0+v
– Connect Galilean two-body v with Poincarė two-body v
– Construct V := 22

0
22 qMqM +−+



Lorentz Kinematics: Phase Space Factors
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Kinematics:  Poincaré-Jacobi momenta

• Nonrelativistic (Galilei)

• Relativistic (Lorentz)
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Kinematics: Poincaré-Jacobi Coordinates
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Poincarė-Jacobi Coordinates:

•All expressions related to permutations much more complicated

•Depend on vector variables => angle dependent 



Permutation Operator:  P=P12P23+P13P23



Relativistic kinematics:
IA (1st order)

• Lorentz transformation  
Lab → c.m. frame) (3-body)

• Phase space factors in 
cross sections

• Poincarė-Jacobi momenta
• Permutations

tPT =

PTPGU   1
0 += −



Quantum Mechanics
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Galilei Invariant:

Poincaré Invariant:
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Two-body interaction embedded in the 3-particle Hilbert space



Vij embedded in the 3-particle Hilbert space 
( ) 22

,0
22

,00 kijkijijijij qmqvmMMV +−++=−=

need matrix elements :



• Obtain fully off-shell matrix elements T1(k,k’,q) from half shell 
transition matrix elements by 

Solving a 1st resolvent type equation:

• For every single off-shell momentum point
• Proposed in

– Keister & Polyzou, PRC 73, 014005 (2006)
• Carried out for the first time here  [PRC 76, 1014010 (2007)]

T1(q) = T1(q’ ) + T1(q) [g0(q) - g0(q’ )] T1(q’ )

Two-Body Input: T1-operator embedded in 3-body system
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Do not solve for V!Do not solve for V!



Obtain embedded 2N t-matrix T1(k,k’,z’) half-
shell in 2-body c.m. frame first :

Solution of the relativistic 2N LS equation with 2-body potential



Consideration for two-body t-matrix
• Relativistic and non-relativistic t-matrix should give 

identical observables for determining relativistic 
effects

• Or two-body t-matrices should be phase-shift 
equivalent

• Four options:
– Start from relativistic LS equation 

• natural option – employed for NN interactions fit to 1 GeV +
– If non-relativistic LS equation is used:

• Refit of parameters (maybe time consuming in practice)
• Transformation of Kamada-Glöckle PRL 80, 2547 (1998)
• Transformation of Coester-Piper-Serduke as given in 

Polyzou PRC 58, 91 (1998)



Phase equivalent 2-body t-matrices:
Coester-Pieper-Serduke (CPS) (PRC11, 1 (1975))

• Add interaction to square of non-interacting mass 
operator

• NO need to evaluate v directly, since M, M2, h have the same 
eigenstates

• Relation between half-shell t-matrices

• Relativistic and nonrelativistic cross sections are identical 
functions of the invariant momentum k
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Total Cross Section for Elastic Scattering:

1st

Order
T = t P



Unitarity Relation
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All calculations use a
Malfliet-Tjon type potential



Total Cross Section and Unitarity Relation

σtot = σel + σbr



Faddeev Equation as 
multiple scattering series

PTtGtPT 0  +=

L++= PtPtGtPT 0

1st Order or IA



Convergence of the Faddeev Multiple 
Scattering Series

Elab [GeV]



Convergence of the Faddeev Multiple 
Scattering Series



Elastic Scattering: Differential Cross Section



Breakup Scattering

Exclusive: Measure energy & angles of two ejected particles

V.Punjabi et al. PRC 38, 2728 (1998) – TRIUMF p+d @ 508 MeV

Outgoing protons are measured in the scattering plane



Exclusive Breakup Scattering               Elab = 508 MeV
(symmetric configuration)                             (V.Punjabi et al. PRC 38, 2728 (1998) 

QFS



Exclusive Breakup Scattering             Elab = 508 MeV
(asymmetric configuration)

QFS



Exclusive Breakup Scattering          Elab = 508 MeV

QFS



Exclusive Breakup Scattering
Space-Star

Elab = 508 MeV



Exclusive 
Breakup

Scattering :

Coplanar
Star

Eq [MeV] Eq [MeV]

QFS

Elab= 508 MeV



Relevance of Study with Model Interaction



200 
MeV

Calcula
tion:

Henryk
Witala



Results for Triton Binding Energy

(EFB 20)

CPS KG5-Channel Calculation



Triton Binding Energy with CD-Bonn 
(arXiv:0810.2148)

-7.91434-ch 
(np+nn+wigner)

0.089-7.916-8.00534-ch np+nn

0.100-8.147-8.24734-ch (jm=4)

0.098-8.143-8.24126-ch (jm=3)

0.107-8.123-8.22018-ch (jm=2)

0.112-8.219-8.3315-ch (s-wave)

ΔRNR



Computational  Equipment

Jacquard: 356 dP Opteron Cluster

256 dP Itanium 2 Cluster 

IBM Cluster 1350
970 dP AMD Opteron

(22 TFlop)



Poincaré Invariant Faddeev Calculations

• Kinematics
– Phase space factors
– Lorentz Transformation from Lab to c.m. frame
– Lorentz Transformation of Jacobi Coordinates

• Always reduces effects of phase-space factors

– Kinematics determines peak positions in break-up 
observables

• Dynamics
– Exact calculation of the two-body interaction embedded in 

the three-particle Hilbert space
– The dynamic effects act in general opposite kinematic

effects



Poincaré Invariant Faddeev Calculations

• Carried out up to 2 GeV for elastic and breakup scattering

– Solved Faddeev equation in vector variables = NO partial waves

• Relativistic effects are important at 500 MeV and higher

– Relativistic total elastic cross section increases up to 10% compared 
to the non-relativistic

– Relativistic kinematics determines QFS peak positions in inclusive 
and exclusive breakup

– Breakup: Relativistic effects very large dependent on configuration

• Above 800 MeV projectile energy:

– multiple scattering series converges after ~2 iterations

– In breakup QFS conditions 1st order calculations sufficient



Poincaré Invariant Faddeev Calculations

• Triton calculations:
– Difference in binding energy between relativistic and 

nonrelativistic calculation is  ≈0.1 MeV
– Provided the CPS realization of a relativistic interaction is used.

– CPS is in a Hamiltonian context the correct way

• Future
– Systematic studies of selected cross sections  & high energy 

limits

– Triton: Question about consistent inclusion of 3NF

– Long term: include Spin




