Effects of nuclear Deformation in Heavy Ion Collisions.

Peter FILIP

Institute of Physics, Slovak Academy of Sciences
Bratislava 845 11, Slovak Republic

Kent State University
April 10th, 2009
OUTLINE:

• Introduction to Nuclear Deformation
 → many interesting pieces, oblate, prolate...

• Collisions of deformed nuclei
 → eccentricity, elliptic flow, fluctuations....

• Conclusions...
Quadrupole deformation: Theoretical Calculation

Moller Chart of Nuclides 2000
Quadrupole Deformation

Pb-204 \rightarrow Hg-200 + α
10^{17} years
Woods-Saxon Density.

\[\rho_w(x, y, z) = \frac{\rho_o}{1 + e^{(r - R_o(1 + \beta_2 Y_{20} + \beta_4 Y_{40}))/a}} \]

- Deformation parameters:
 - quadrupole: \(\beta_2 \rightarrow [3\cos^2(\theta) - 1] \approx Y_{20} \)
 - octupole: \(\beta_3 \rightarrow [5\cos^3(\theta) - 3\cos(\theta)] \)
 - higher order: \(\beta_4 \rightarrow [35\cos^4(\theta) - 30\cos^2(\theta) + 3] \approx Y_{40} \)
 - Highest order: \(\beta_6 \rightarrow \text{nucl-ex/0106023} \)

- see old ref. Rev.Mod.Phys.30 pp.498-506 (1958)
Oblate/prolate shape: β_2

- $\beta_2 > 0 \rightarrow$ rugby-ball (prolate) shape. Ne-20, Cu-63, Sm, W, U..

- $\beta_2 < 0 \rightarrow$ oblate (squeezed) shape: Si, As, Ge, Au

$\beta_2 = -0.47 \quad \beta_2 = -0.3 \quad \beta_2 = 0.0$
Higher-order deformation: β_4
Octupole deformation: β_3

- Pear-shaped deformation
 → under investigation, unstable to α-decay
- Two candidates: Sm-149 and Rn-222
 $(\beta_3 = -0.05) \quad (\beta_3 = -0.13)$
Spherical nuclei = closed shells of nucleon orbitals (magic numbers).

Radius increases as $A^{1/3}$ [assuming constant baryon density].
Shape comparison I.

Ge-70 Sm-154 As-75
Shape comparison II.

W-186 Ga-71 Tm-169
Cf-251 and Th-232

[Cf-251 in RHIC = 89800 Years half-life at 100GeV/n; for 10^{13}/ beam \approx 1 decay/6s]
Other Pictures II.

\[
\begin{align*}
\text{Ho-165} & \quad \rightarrow \quad \leftarrow \quad \text{Pb-207} \\
\text{(long-polarized)}
\end{align*}
\]
Other Pictures III.

Si-28 \rightarrow ← Au-197
(AGS)
EXOTICS.

Dubnium(105)-268 (16 hours) REAL-EXOTIC Americium(95)-240m (1 ms)
Reality: RHIC Au+Au 200GeV/n

3-protons, 8-neutrons below 2x-magic Pb.

\[^{197}\text{Au} + ^{197}\text{Au} \]

oblate shape\[^{[1]}\]
\[\beta_2 = -0.13 \]
spin: 3/2
stable, 100%
Natural isotope

Au-197 nucleus Deformation?

Yes: has quadrupole moment \(Q = 0.59 \text{ barn} \) \[\text{[Phys.Rev.A73(2006)022510]} \]

Other deformed nuclei at RHIC? Yes: Cu-63 & U-238.
Elliptic flow at RHIC energies:
→ origin: the initial *spatial* asymmetry.

For deformed nuclei → initial *eccentricity* is affected !!!
→ elliptic flow is affected.
Optical Glauber Model

- Using Deformed Woods-Saxon density:
 \[\rho_w(x, y, z) = \frac{\rho_o}{1 + e^{(r-R_o(1+\beta_2 Y_{20} + \beta_4 Y_{40}))/a}} \]
- Projections \([\theta, \phi]\) in transversal plane \(\rightarrow\)
- From the overlap of colliding nuclei:
 - Baryon density
 - \(N_{\text{part}}\): participant density \(\rho_{\text{part}}(x, y)\)
 - \(N_{\text{coll}}\): \(\rho_{\text{coll}}(x, y)\) binary collisions density
- Obtain eccentricity
 \[\varepsilon = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2} \]
- Multiplicity:
 \[dN_{\text{ch}}/d\eta = (1 - x) \cdot n_{pp} \frac{N_{\text{part}}}{2} + x \cdot n_{pp} N_{\text{coll}} \]

* Phys. of Atom. Nucl. 71 (2008) 1609
Distributions N_{part}, N_{coll}, N_{ch} from Opt.GM

Two-component $dN_{\text{ch}}/d\eta$: Phys.Lett.B507(2001)121; $n_{pp} = 2.29$ and $x = 0.13$
Eccentricity in collisions of prolate nuclei.

- Ho-165 ($\beta_2 = +0.3$)

\[\varepsilon_{\text{part}} = \frac{\sqrt{(\sigma_y - \sigma_x)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2} \]

- Pear-shaped overlaps!

- Fluctuations $\varepsilon[\theta^1,\phi^1;\theta^2,\phi^2]$ at given $[b]$
Technical detail: Random orientation of nucleus.

Random orientation:

= random distribution of points where main axis (spin) crosses the surface of the sphere.

Probability is proportional to the area.

Area dS corresponding to $d\theta d\phi$ is:

$$dS = R \sin(\theta) \, d\theta d\phi$$

\rightarrow $P(\theta) = \sin(\theta)/2$ (normalized to 1.)

\rightarrow $P(\phi) = \text{const.}$ (random ϕ angle)

\rightarrow angle θ is not random.

Random orientation means random ϕ, and $\sin(\theta)$ distributed θ angle.
Eccentricity in collisions of oblate nuclei.

- Au-197 (predicted $\beta_2 = -0.13$)

Zero eccentricity at $b=3\text{fm}$ and non-zero ε for $b=0\text{fm}$

Eccentricity fluctuates again!
Deformation of nuclear shape increases

\[\varepsilon \rightarrow v_2 = \text{Elliptic flow fluctuations.} \]

(at given fixed collision centrality).
What happens with $<\varepsilon>$ due to deformation in UU & AuAu?

- In noncentral collisions $<\varepsilon>$ stays unchanged

 → central coll: Increased $<\varepsilon>$ due to deformation.

 + additionally, deformation increases eccentricity fluctuations.
UU collisions from Opt.GM: $dN_{ch}/d\eta$

Only deformation

Deformation + FLUCT

Cusp in $\langle \varepsilon \rangle$ for very-central collisions (large $dN_{ch}/d\eta$).

Highest multiplicity: $dN_{ch}/d\eta$ is observed for longitudinally polarized, central $b=0$ fm collisions.

\rightarrow eccentricity cusp \leftarrow
Why \(\frac{dN_{\text{ch}}}{d\eta} \) sensitive to orientation?

\[\frac{dN_{\text{ch}}}{d\eta} \text{ depends on orientation due to } N_{\text{coll}} \]

\[dN_{\text{ch}}/d\eta = (1 - x) \cdot n_{pp} \frac{N_{\text{part}}}{2} + x \cdot n_{pp} N_{\text{coll}} \]

- \(N_{\text{part}} \) is not sensitive to orientation \(v_2 \) \([N_{\text{part}}] \) not interesting.

\[\rightarrow \text{ Study: } v_2 [dN_{\text{ch}}/d\eta] \text{ (in central collisions)!} \]
Eccentricity fluctuations:
\[\sigma_\varepsilon = \sqrt{\sigma_{\beta^2}^2 + \tilde{\sigma}_\varepsilon^2} \]
→ finite number of interacting nucleons: \(\tilde{\sigma}_\varepsilon \)
→ ground-state deformation of coll. nuclei: \(\sigma_{\beta^2} \)

Effects predicted by Optical Glauber Model → **confirmed.**
Comparison of Entropy Density in Au+Au vs. U+U

Entropy density: \[\rho_s(x, y) = \kappa_s \left[\alpha \rho_{\text{part}}(x, y) + (1 - \alpha) \rho_{\text{coll}}(x, y) \right] \]

β_4 deformation Parameter for 238U

- Moller et al. [1] prediction for 238U is: $\beta_4 = +0.093$
 - spatial distribution of nucleons is modified
 - participant eccentricity is modified
 - final ν_2 strength can be modified! [hydro calc. needed].

238U participant density in transversal plane [fm$^{-2}$].

Polarization of 238U beam? No way.

Spin of 238U = 0$^+$
Magnetic moment $\mu = 0$
Quadrupole moment: unknown.

\rightarrow consider 238U beam unpolarized.
CONCLUSIONS:

● Nuclei collided at AGS/SPS/RHIC are deformed:
 → Si-28, Cu-63, In-115, Au-197, (U).

● **Elliptic flow is affected in deformed nuclei collisions:**
 → eccentricity: \(< \varepsilon >\) increased in Au+Au central
 + cusp for Ho+Ho and U+U predicted
 → fluctuations: \(\sigma(\varepsilon)\) increased !

● \(\beta_4\) deform. parameter for \(^{238}\)U is important !

● **Study of deformation effects is needed to understand properties of partonic matter created at RHIC.**