Classical Mechanics — Homework III

The final version for this homework is due Wednesday Sep. 30.

A. The reflector mirror of a searchlight normally has a parabolic shape (or more precisely, is a paraboloid of revolution). Let \(z \) be the axis of revolution. The paraboloid can be described in cylindrical coordinates by \(\rho^2 = az \), where \(a \) is a constant and \(\rho \) is the distance from the \(z \) axis to any point on the surface. Suppose that such a mirror points straight up, and a particle of mass \(m \), total energy \(E \), and angular momentum \(J \), slides on it without friction. Use the Lagrange Multiplier method to find the magnitude of the constraint force as a function of \(\rho \) and the constants given above.

B. Now consider a particle sliding without friction on the surface of a different upward-facing bowl, this time having a spherical shape of radius \(R \). Aside from \(R \), we know only the particle’s mass \(m \).
 (1) Determine the Lagrangian in terms of the usual angles \(\theta \) and \(\phi \).
 (2) Determine the generalized momenta \(p_\theta \) and \(p_\phi \).
 (3) Discuss cyclic coordinates and conserved quantities in the context of this example.
 (4) If \(\theta = \theta_0 \) (a constant) at all times, find the velocity of the particle.

C. Let us go back to the Lagrangian considered in Homework II-B:

\[
L = e^{bt}(\frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2)
\]

where \(b \) and \(k \) are each positive constants. Consider a transformation \(s = q \exp(bt/2) \). Rework the problem in terms of the coordinate \(s \). Explain any differences between the solutions in terms of \(q \) and \(s \).